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MotivationMotivation

Stage I and Stage II High Throughput TechniquesStage I and Stage II High Throughput Techniques for for 
the development of mixed oxides the development of mixed oxides DeNOxDeNOx catalystscatalysts

Need to focus on inventing new catalyst composition that 
allow to break away from current limits. Need to shift to 
more complex catalyst compositions.1

High-throughput approach allows to explore a vast 
combination of new catalytic materials.

Stage I : very high throughputs and qualitative assessment 
of candidate materials.

Stage II: further evaluation with comparable results to 
conventional reactor.

Activated carbon route provides a synthesis method easily 
parallelized to produce new mixed oxides compositions.

Combinations of Al, Mg, Mn, Co, Ni, Cu, Fe, Zr and La are 
used to prepared the new catalyst compositions.

Activated carbon is an ideal exotemplate: highly porous 
material with a large internal surface area (500-2100 m2/g).

The activated carbon synthesis involve:

•

 

1st step: Impregnation with concentrated metal salt 
precursor solutions.

•

 

2nd step: Calcination and removal of activated carbon.

Mixtures of oxides nanoparticles are formed with surface areas 
between 50 and 300 m2/g.

High calcination temperatures and catalyst compositions with 
high Al content produce spinel phases with high thermal 
stability, and potential catalytic activity (dp≈5-20nm).

Stage I reactors need to be highly integrated. Parallelizing multi-channel reactors is not any 
longer a valid approach. Reactors for primary screening need a format highly integrated with 
the solid synthesis, or the analytical technique for optimum performance.4

Development of a 529 (23x23) independent channels reactor with the help of monolith blocks, 
which distribute the flow and act as independent channels.4 Catalysts are placed in brass plate 
with 3.5 mm inner diameter and 20 mm high bores.

The reactor is designed to operate in connection with the color detection system introduced by 
Busch et al.5 The presence of NO is detected by the color change of a filter paper impregnated 
with an organic dye. After the catalyst bed the gas flow through the filter paper changes the 
color in case of NO or NO2.

Mixtures of high content Al with combinations of 3 or 4 other elements (with 10% content) are 
used for the prescreening.
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Library synthesis done with 
the help of a robot.

~50 mg catalyst
1500 ppm NO

2000 ppm C3

 

H6
5% O2

 

, rest N2
GSHV 20.000 h-1

SEM picture of a mixed oxide 
prepared with a spherical 

activated carbon.

200 μm

Images of the 49 parallel 
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reactor

 

setup: 
(A) side

 

view
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setup, (B) top

 

view
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(C) closed
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ConclusionsConclusions

Genetic algorithm optimizationGenetic algorithm optimization

“Simple” catalyst compositions (ternary oxides) show better performance than more complex 
compositions.

Most of the oxides oxidize NO to NO2, which reacts with C3H6 and yields N2.

The N2O yield is less than 5% for all mixed oxides.

Stage II screening approach in combination with genetic algorithms is a valuable tool for high 
throughput investigations of new catalysts.

Mixtures of Al-Ni-Cu and combinations thereof show best performance.

(A) Brass plate with 23x23 positions, filled with the geometric distribution of 5 wt% Pt on γ- Al2

 

O3

 

, 
SiO2

 

and γ- Al2

 

O3

 

. (B) Filter paper result when reaction temperature is 215ºC; 1000 ppm NO, 1000 
ppm C3

 

H6

 

, no O2

 

, rest N2

 

. In positions with 5 wt% Pt on γ- Al2

 

O3

 

, NO reacts with C3

 

H6

 

to yield N2

 

, 
and no color change is seen. The black and white scan amplifies the differences. (C) Filter paper 
resulting from reaction at 210ºC with different mixed oxides with high content of Al and

 

 
combinations of 3 or 4 other elements, each at 10%.

When a hit is discovered in the 529 reactor, 
it is confirmed and further analyzed in detail 
in a single tube reactor.

Reaction conditions: 1500 ppm NO, C3H6, 
5% O2, rest N2. GSHV ≈ 60.000 h-1.

Al0.9Cu0.1Ox shows 40% yield to N2 at 300ºC.

Al0.9Ni0.1Ox shows 42% yield to N2 at 420ºC.

Two consecutive catalyst beds of AlNiOx and 
AlCuOx in the correct order achieve high 
yields over a wide temperature range.

49 parallel pass flow Stage II reactor for an accurate and fast screening.  

The analysis is done by FTIR where concentrations of NO, NO2, N2O, C3H6, CO and CO2 can 
be monitored.

This reactor concept allows to measure 10 data points at different temperatures for all 49 
catalysts in 26 hours (at 20.000 h-1 GSHV) with a maximal error of 5 %.

Genetic algorithms are highly flexible heuristic global optimization methods. 

The heuristics include techniques, which are inspired by evolutionary biology: The maintaining 
of a population of potential solutions and incorporation of recombination, mutation and 
selection steps during each generation.

Pareto optimization or multi-objective optimization includes the search for multiple solutions of 
a problem with respect to several goals.

Genetic algorithm were applied to optimize a system, consisting of metal oxides consisting of 
combinations of 10 elements, selected from the transition metals (Cu, Ni, Co, Fe, Mn), the 
lanthanides (La, Ce, Sm) and the alkali metal (K, Sr) group.

The catalyst are optimized with respect to the conversion to N2 and the temperature at which 
the yield is maximal (the so called peak temperature).
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