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Need to focus on inventing new catalyst composition that 
allow to break away from current limits.

High-throughput experimentation allows to explore a vast 
combination of new catalytic materials.

Intelligent design of experiments and libraries is essential in 
order to find new and improved catalysts.

The screening has to be directed to the desired direction 
and the number of experiments has to be minimized.

Evolutionary methods such as genetic algorithms are highly 
flexible optimization methods [1].

Genetic algorithms can be adapted in order to screen for 
improved combinations of mixed oxide metal catalysts with 
respect to multiple objectives.

Combinations of Al, Cu, Ni, Co, Fe, Mn, K, Sr, La, Ce and 
Sm are used to prepare the new catalyst compositions.

Automated synthesis of oxide nanoparticles by the activated carbon route [2] 
(fig. 1).

High-throughput screening using a 49 parallel pass flow stage II reactor (fig. 2) 
in combination with a FTIR analysis of the exhaust gas stream (not shown).

The combined error of the synthesis and of the catalytic test is 6 % (std. dev.). 

Multi-objective design of experiments by evolutionary optimization based on 
genetic algorithms.

Encoding of the catalysts by binary chromosomes of 27 bits: 11 bits for the combinations 
of the elements and 16 bits for the concentrations (fig. 4).

Selected boundary conditions and constraints in order to reduce the search space:

1. The maximum number of main elements in a catalyst is less or equal than four.
2. The sum of the concentrations of the promotor elements is limited to 5.0 mol%.
3. The sum of all concentrations equals 100 mol%.
4. Two systems are considered: systems with and without Al as support; for both systems 

Al constitutes the remainder, but the concentration ranges are different (table 1).

Encoding of solid multiEncoding of solid multi--component catalystscomponent catalysts
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Stage II screening approach in combination with genetic algorithms is a valuable tool for high-
throughput investigations of catalysts also with respect to multiple objectives. 

The full strength of these techniques can be played off especially for the screening of 
unknown, high dimensional and constrained spaces.

“Simple” catalyst compositions (ternary oxides) show better performance than more complex 
compositions.

The best noble metal free catalysts are combinations of Cu and Ni. Catalysts, which are active 
at low temperature, furthermore include Co and Fe.

Constraint handling techniqueConstraint handling technique

concentration of 1st to 4th 

component:
16 steps (4 bit) for each 
element

1 bit 2 bits 8 bits 16 bits

System with support / no support (Al)

K / Sr or both as promotor

valid combination of main elements: 
Cu, Ni, Co, Fe, Mn, La, Ce, Sm
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Fig. 2: Images of the 49 parallel channel reactor 
set-up (hte AG Heidelberg): (A) side view on the 
complete setup, (B) closed reactor and (C) top 
view on the open reactor.

Fig. 1: ABIMED liquid 
handling robot robot 
for automated 
precursor mixing and 
impregnation of 
activated carbon 
particles.

Precursors

Mixing

Impregnation

Genotype support no support
0000 0.5 2.0
0001 1.0 4.0
0010 2.0 8.0
(…) (…) (…)

0111 12 30
1000 16 33.3
(…) (…) (…)

1100 32 63
1101 33.3 75
1110 34 88
1111 35 100

Application: the problem of finding the best combination and composition of elements in a 
catalyst active at low temperature in HC-SCR (hydrocarbon selective catalytic reduction of NO).

The catalysts are optimized with respect to the conversion to N2 and the temperature at which 
the yield is maximal.

Reaction conditions: 1500 ppm NO, 2000 ppm C3H6, 5% O2, rest N2, GSHV 20.000 h-1

ResultsResults

Fig. 6: NO to N2 conversion curves as a 
function of the temperature for selected 
Pareto-optimal solutions.

Fig. 7: Evolution of the objective function 
(1- yield) for the solutions of the archive 
population for SPEA2.

Fig. 8 and 9: Visualisation of the evolution of the archive population in the objective space for 
SPEA2 and IBEA for selected generations.

Fig. 10 and 11: Evolution of the occurrences of elements in the archive population for SPEA2 and IBEA.

Single objective optimization is a 
special case of multi-objective 
optimization (and not vice versa).

Implementation of the 
optimization framework using 
PISA [3].

Multi-objective algorithms: 
SPEA2 [4] and IBEA [5].

Variators: bit-flip mutation and 
one point binary crossover.

Chromosome with
invalid number of 

elements

Apply the bit-flip 
mutation operator on 

the selected gene

Chromosome with
valid number of 

elements

While number of 
elements > 4

Number of 
elements = 0

Gene = 1
Select a random gene 
from the combinatorial 

part of the chromosome

Apply the bit-flip 
mutation operator on 

a random gene

yes

no

yes

Fig. 5: Flowchart of the repair algorithm for the combinatorial part of the chromosome.

400 500 600 700 800
0.0

0.1

0.2

0.3

0.4
 Al-0.39-Ni-0.16-Co-0.35-Fe-0.06-Ce-0.04
 Al-0.5-Cu-0.2-Ni-0.2-Co-0.08-Fe-0.02
 Al-0.595-Cu-0.12-Ni-0.28-Fe-0.005
 Al-0.84-Cu-0.12-Ni-0.04
 Al-0.84-Cu-0.04-Ni-0.12

 

 

N
2 y

ie
ld

Temperature (K)

Table 1: Discrete encodings of the 
element concentrations (in mol%).

Fig. 4: Encoding scheme using 11 bits for the combinatorial 
and 16 bits for the continuous part of the problem.
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Fig. 3: Schematic representation of a Pareto-optimal front 
for two objectives.
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