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The ideal engineer is a composite ... He is not a scientist, he is not a mathematician,
he is not a sociologist or a writer; but he may use the knowledge and techniques of any
or all of these disciplines in solving engineering problems.

–N. W. Dougherty (1955)
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1 Introduction and motivation

In the last few years, in the light of the energy problem and global warming, additional
effort has been made to prevent the release of substances which amplify these enviromental
problems. Therefore the diesel and lean-burn gasoline engines are becoming more and
more the alternative to regular gasoline engines due to the higher efficiency with respect
to the fuel consumption. Also stronger emission regulations of harmful substances for
vehicles over the past few years require new catalysts, which are highly active for the
selective reduction of nitrogen oxides in oxygen rich conditions. One group of possible
catalysts are noble metal free metal oxides. A huge number of combinations is possible
to think of and some of them were already investigated on various types of support over
the last years.

In this work we will focus on the optimization of metal oxides consisting of combi-
nations of 10 elements, selected from the transition metals (Cu, Ni, Co, Fe, Mn), the
lanthanides (La, Ce, Sm) and the alkali metal (K, Sr) group. Alumina was chosen as
support, due to its ability to form a high surface area and its high hydrothermal stability.
A combinatorial, evolutionary directed, high-thoughput multi-objective optimization ap-
proach is applied to this system. Wolf et al. (2000) were the first to use a single objective
evolutionary optimization algorithm for the search of optimal combinations of elements
of solid catalysts. However, in real world problems and especially in catalysis, several
often conflicting objectives are generally to be taken into account. Thus it is necessary
to develop methods, which are able to find optimal solutions in multidimensional spaces.
Due to its importance in industry, the selective catalytic reduction of nitrogen oxides was
chosen as test case for this approach. The catalyst will be optimized with respect to the
conversion to nitrogen and the temperature at which the yield is maximal (the so called
peak temperature). Two different multi-objective algorithms, namely SPEA2 (Zitzler
et al., 2002) and IBEA (Zitzler and Kunzli, 2004) will be applied to this problem. The
results of the two algorithms will be compared and discussed. Also some implementation
and encoding issues, common to combinatorial chemistry problems, will be emphasized.
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2 State of the art in deNOx technology

2.1 Introduction

In this chapter, the current situation in catalytic removal of nitrogen oxides (NOx)
from exhaust gases will be described with a focus on the selective catalytic reduction of
NOx by propene. Nitrogen oxides are one type of environmental pollutants which are
predominantly generated during the combustion of fossil fuels. In order to meet society’s
requirements of energy, large amounts of fossil fuels are required corresponding to a high
quantity of pollutants discharged into the atmosphere.

These pollutants influence the environment and human health especially in congested
urban areas but also worldwide. Nitrogen oxides are the source of severe environmental
problems, such as acid rain, smog and ozone formation, which is a pollutant itself due to
global warming impacts and its strong oxidizing properties. Figure 2.1 shows a general
scheme of emission sources, transformations and transport in the environment, natural
removal options and environmental effects (EPA).

Figure 2.1: Sources, transformations and transport, natural removal and effects of emis-
sions (Dathe, 2005).

For instance, the increased use of cars in the 1960s and 1970s resulted in serious
decrease of the air quality caused by exhaust gas emissions from automobile engines.

2



Chapter 2 State of the art in deNOx technology

The oxidation of gasoline in engines to carbon dioxide (CO2) and water was incomplete
and led to the production of unburned hydrocarbons (HC) and lower levels of partially
combusted organic products, together with large amounts of carbon monoxide (CO).
The solid particles are generally referred to particulate matter (PM) and consist of
carbon particles and organic compounds of less than 3 µm as approximated by the
U.S. environmental protection agency (EPA). Nitrogen oxides are generated at high
temperature during the combustion process mostly as a result of the equilibrium between
NO and N2 + O2 (so called thermal NOx), but also by oxidation of nitrogen compounds
present in the fuel. The primary man made sources of nitrogen oxides are therefore motor
vehicles, electric utilities, and other industrial, commercial, and residential sources that
burn fuels. NOx can also be formed naturally as shown in figure 2.1. In figure 2.2 the
reactions of atmospheric NOx resulting in secondary pollutants are illustrated.

Figure 2.2: Chemical transformations of atmospheric NOx through photochemical pro-
cesses (=), thermal gas-phase processes (–), dry deposition (· · · ), and hetero-
geneous reactions (- -) (Bosch and Janssen, 1988).

More than 50% (EPA) of the nitrogen oxides are formed by fossil fuel combustion in
motor vehicles. The typical mixture of emissions from diesel exhaust gas consists of 0 -
800 ppm HC, 0 - 500 ppm NOx, CO2 and H2O (Dathe, 2005). A good emission control
technique should be able to reduce these emissions to a minimum.
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Chapter 2 State of the art in deNOx technology

2.2 Emission control techniques

The emission control techniques (deNOx) can be divided in two main groups: combustion
control and post-combustion abatement techniques. The combustion control methods are
also named as clean methods, whereas the abatement of emissions after the combustion
is generally referred as clean-up technique or flue gas treatment (Armor, 1992, Bosch
and Janssen, 1988, Busca et al., 1998).

Combustion control tries to minimize NOx formation by designing better burning
devices that minimize the oxygen concentration, the flame temperature and the residence
time in the combustion zone. Also the use of fuels with low levels of nitrogen content
is an option. Examples of combustion control devices are low NOx burners, flue gas
recirculation, fuel reburning, staged combustion and water or steam injection. The
combustion control technologies are the most cost-effective and energy efficient techniques.
The main disadvantage is the low NOx conversion (less than 70%) compared to some
post-combustion methods (90-99%) (Bosch and Janssen, 1988, Hums, 1998, Parvulescu
et al., 1998).

Post-combustion techniques are secondary measures for the treatment of the flue gas
already containing NOx. In general five methods are available: absorption, adsorption,
condensation, incineration and chemical reaction. Specific problems require often a
combination of several methods. An example of a non catalytic method is the selective
non-catalytic reduction (SNCR), developed by Exxon. It is an homogeneous gas phase
reduction process in which NOx is selectively reduced by NH3 to N2. This process requires
low capital investment, however its temperature operation window (1123 - 1323 K) is
very narrow and difficult to meet in larger facilities. In comparison to the non-catalytic
solutions, catalytic methods offer lower operating temperatures and are the common
method to control gas emissions from vehicles (Armor, 1995). The possible catalytic
solutions can be divided into four categories: the direct NO decomposition, the three
way catalyst (TWC), the NOx storage techniques and the selective catalytic reduction
using ammonia (SCR) or hydrocarbons (HC-SCR) as reductant.

2.2.1 Direct decomposition of NO

The direct catalytic decomposition of NO to N2 and O2 is an attractive option because it
does not involve the use of an additional reductant. NO is thermodynamically unstable
(NO → 0.5 N2 + 0.5 O2, ∆G0 = −86 kJ/mol) up to 1273 K, however due to its high
activation energy of 364 kJ/mol (Glick et al., 1957) a catalyst is necessary. In their
pioneering work Iwamoto et al. (1986) reported 1986 that Cu-ZSM-5 was an active
catalyst for the decomposition of NO to N2 at 773 K. This lead to great enthusiasm
amongst scientists. As a result many catalysts were tested (Fritz and Pitchon, 1997), and
it was shown that complete NO conversion to N2 could be obtained. However, up to now
no catalyst was found to be suitable for practical application due to the impossibility
to suppress the inhibiting effect of oxygen and water under reaction conditions (Armor,
1995). It has become clear that the direct decomposition is not suitable for a real
technological application in the presence of a complex exhaust mixture.
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Chapter 2 State of the art in deNOx technology

2.2.2 Three way catalyst technology

The earliest catalytic emission control systems, where fuel and air were mixed using
so called carburetors and not by injection, were not able to precisely control the air
fuel ratio and performed rather poorly. However, it was observed, that Pt/Rh catalysts
could, under appropriate conditions, simultaneously oxidize CO and HC to CO2 and
H2O and reduce NOx to N2 and O2 with a high efficiency (Twigg, 2007). This lead to
the development of an emission control system, which is nowadays one of the principal
methods of controlling the combustion emissions from Otto engines. This system is well
known as the three way catalyst technology (TWC), as it is able to remove all three
pollutants from the exhaust gas simultaneously. In 1979 (Shelef and Graham, 1994)
all the elements necessary to precisely control the air to fuel ratio were available: The
electronic fuel injection (EFI) allowed a precise fuel injection to provide a stoichiometric
air fuel mixture. A mixture of λ = air/fuel = 1.0 is at stoichiometry, rich mixtures
are less than 1.0, and lean mixture are greater than 1.0. The lambda or oxygen sensor
was able to provide an electrical signal to the EFI indicating if the engine is operating
in fuel rich or lean conditions by measuring the residual oxygen (for lean mixtures) or
hydrocarbons (for rich mixture) in the exhaust gas. Finally a microprocessor was able to
calculate the exact amount of fuel and air to be injected to maintain the exhaust gas
close to the stoichiometric point.

Figure 2.3 shows the influence of the air/fuel ratio on the operation characteristics
of a three way catalyst. If the air to fuel ratio is not in a narrow window near the
stoichiometric point large amounts of NOx are emitted in the case of an air rich mixture
and large amounts of CO and unburned hydrocarbons in the case of a fuel rich mixture.
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Figure 2.3: Three way catalyst performance at fuel rich (λ < 1), lean (λ > 1, diesel
engine) or stoichiometric (λ = 1, Otto engine) conditions (Kreuzer et al.,
1996).

The three way catalysts, which are in use nowadays, are manufactured in a honey
comb monolithic form and are composed of 0.1-0.15% precious metals with a ratio of
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Chapter 2 State of the art in deNOx technology

Pt to Rh of 5 to 1 and varying concentrations of bulk high surface area CeO2 mixed
with a Al2O3 wash-coat stabilized with 1-2% of La2O3 and BaO (Farrauto and Heck,
1999). Pt is involved in the oxidation, Rh in NO reduction while the main role of CeO2

is in the storage of O2 needed in the case of fuel rich conditions. The catalysts are
very efficient (< 95% NOx conversion) (Farrauto and Heck, 1999) under appropriate
conditions. Among the problems of the TWC are their poisoning by sulfur compounds
and the formation of unburned hydrocarbons during cold start of the engine. The main
problem nowadays is that the environmental regulations demand better fuel efficiency.
This is achieved with engines that operate under lean burn conditions. Under these
conditions the NOx formation is favored and in the presence of excess O2 these catalysts
are not able to reduce the nitrogen oxides. The same problem exists for applications in
diesel engines and power plants.

2.2.3 NOx storage materials

A promising approach to remove nitrogen oxides from exhaust gases is the NOx storage
and reduction system (NSR) introduced by Toyota and widely tested in the automobile
industry. It operates under lean burn conditions and results in 5-6% fuel economy savings.
The NOx generated is stored as nitrate in an alkaline earth metal oxide such as BaO
incorporated in the TWC. Periodically the engine goes to fuel rich conditions for a short
time in which the NOx is reduced (Farrauto and Heck, 1999) as illustrated in figure 2.4.

NOx storage

NO + O2

NO2
NO3

Al2O3

Pt BaO/BaCO3

NO2

HC, CO, H2

Al2O3

Pt BaO/BaCO3

NO3

H2O + CO2
N2

NOx reduction

Figure 2.4: NOx storage and reduction mechanism on the NSR catalysts (Dathe, 2005).

The major drawback for an industrial application is the deactivation of the catalyst
by sulfur oxides (SOx) present in the exhaust gas. They form sulfates, which are
thermodynamically more stable than the corresponding nitrates and cause a permanent
deactivation of the storage function. Dathe (2005) studied the concept of using sulfur
traps to protect the NSR catalysts and to avoid the irreversible deactivation of the
system.
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Chapter 2 State of the art in deNOx technology

2.2.4 Selective catalytic reduction

The most widely applied method among the emission control technologies is the selective
catalytic reduction with ammonia (NH3-SCR) (Armor, 1995, Busca et al., 1998, Hums,
1998, Parvulescu et al., 1998). This method is considered as the best available control
technique for industrial deNOx. NH3 is injected into the flue gas and reduces with the
help of a catalyst NOx to N2 and H2O. NH3 is used as reductant because it is very
selective and reacts mostly with NOx and not with O2. The selective or desired reactions
are shown equation (2.1) and (2.2):

4NO + 4NH3 + O2 −→ 4N2 + 6H2O (2.1)

2NO2 + 4NH3 + O2 −→ 3N2 + 6H2O (2.2)

The non-selective reactions mainly involve the oxidation of NH3 and SO2 to the corre-
sponding oxides or to N2 and H2O.

Depending on the catalyst the process operates at low (423 - 573 K), medium (533 -
700 K) or high temperatures (618 - 863 K). V2O5/TiO2 (VMXTM) catalysts supported on
a monolith are most broadly used and operate in the medium temperature region (Heck,
1999). They are highly active and sulfur tolerant. Platinum based LT catalysts are active
in the low temperature region, but not sulfur tolerant. The major advantage of the
selective catalytic reduction with ammonia is the high degree of NOx conversion that can
be achieved (> 95 % conversion) (Hums, 1998, Parvulescu et al., 1998) under oxygen rich
conditions. However, this method has several known disadvantages: it is quite expensive
compared to the combustion control methods because of the sophisticated injection and
distribution pipes and nozzles and ammonia or an ammonia source has to be transported
additionally to the fuel. Beside the engineering difficulties the oxidation of sulfur present
in the fuel forms SO2 and SO3 that subsequently form ammonium sulfate and bisulfate by
reaction of SO3 with NH3 and H2O. These salts cause plugging and corrosion. All these
problems make the operation of the NH3-SCR complicated. Chemical and mechanistic
aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts were
reviewed by Busca et al. (1998) and Parvulescu et al. (1998) in 1998.

An alternative approach to reduce the nitrogen oxides is the selective catalytic
reduction of NOx by hydrocarbons (HC-SCR). HC-SCR was first discovered in the 1970’s
but was abandoned at this time due to the low selectivity to nitrogen compared to
NH3-SCR. Nowadays HC-SCR is attracting a lot of interest and is believed to be a very
promising way to eliminate nitrogen oxides (Fritz and Pitchon, 1997, Iwamoto, 1996,
Parvulescu et al., 1998, Traa et al., 1999) under lean burn conditions. Low levels of
unburned hydrocarbons are present in the exhaust gases and their reductive power can
be utilized. Also a second possibility for this approach could be the injection of these
hydrocarbons from an external source as in the case of NH3. Due to the focus of this work
on the optimization of catalysts for the HC-SCR, in the following section this approach
will be discussed in more detail.
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Chapter 2 State of the art in deNOx technology

2.3 Selective reduction of NOx by hydrocarbons

The selective catalytic reduction by hydrocarbons (HC-SCR) is an interesting option
to control the emissions in automobile lean burn exhaust gases. The following set of
selected overall reactions describes best the competition of oxygen and nitrogen oxide
during the HC-SCR with propene:

2 C3H6 + 9 O2 −→ 6 H2O + 6 CO2 (2.3)

2 NO + O2 ←→ 2 NO2 (2.4)

2 C3H6 + 18 NO −→ 9 N2 + 6 CO2 + 6 H2O (2.5)

4 C3H6 + 18 NO2 −→ 9 N2 + 12 CO2 + 12 H2O (2.6)

C3H6 + 12 NO −→ 6 N2O + 3 CO2 + 3 H2O (2.7)

The selective reactions leading to the generation of nitrogen are (2.5) and (2.6). These
two reactions are very difficult under lean burn conditions, because propene, which is
required for the reduction of the nitrogen oxides, can also react with oxygen as shown in
equation (2.3). The full combustion of propene by oxygen is under lean burn conditions
mush faster than the combustion even without a catalyst. A catalyst is required to
selectively lower the activation energies of reaction (2.5) and (2.6) but not of reaction (2.3)
and (2.7). Reaction (2.4), the oxidation of NO to NO2, can improve the SCR activity,
as NO2 can be a key intermediate in the NO reduction depending on the catalyst and
reaction condition (Ansell et al., 1993). In the next part of this section, a short overview
of the different solid catalyst systems tested in the last years for HC-SCR activity will
be given. Three different reaction mechanisms which lead to nitrogen formation will also
be discussed briefly.

Catalysts for HC-SCR

Iwamoto et al. (1986) discovered that Cu-zeolites were suitable for the selective reduction
of NO. The NO reduction was performed by alkanes and alkenes over Cu-ZSM-5 under
lean burn conditions. Since then a large number of catalysts were investigated and the
results were published in the literature (Castagnola et al., 2004, Garcia-Cortes et al.,
2000, Liu et al., 2006, Nejar et al., 2005, Neylon et al., 2004, Sadykov et al., 2005).
The catalysts can be roughly divided in the following categories: metal oxides, metals
supported on zeolites and supported noble metals. Among the oxide based catalysts,
the following catalysts were reported to be active in the HC-SCR: simple oxides: Al2O3,
SiO2-Al2O3, TiO2, ZrO2, CeO2, La2O3, oxides of transition metals (Cu, Co, Ni, Mn, Fe,
Ag) supported on oxides from the first group, as for instance silica or alumina, and spinel
or perovskites metal oxides (Liu and Woo, 2006).

The early findings of active Cu-zeolites attracted the special interest in transition
metals supported zeolites. Zeolite based catalysts have a high activity and a relative
wide operation temperature window. Co and Fe and other metals on ZSM-5 show good
activity and selectivity to N2. ZSM-5 seems to be more active than MOR or MCM-22
due to the high concentration of strong acid sites if propane is used as reductant (Liu
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and Woo, 2006). Also it was shown that the pore structure of the zeolite is important
(Liu and Woo, 2006). However, the main problem of these metal-zeolite based catalysts
is the poor hydrothermal stability.

Transition metal oxides supported on alumina or other supports have especially
attracted attention due to their high hydrothermal stability. However, many factors
related to the synthesis, as for instance the type of support, the metal loading, the
calcination temperature and the preparation method are influencing the activity of these
metal oxides. Also combinations of binary, ternary or higher order metal oxides which
may form active spinel or perovskite phases are influencing the final activity. Studying
the influence of the support, it was found, that alumina is the most suitable, while
silica supported catalysts are not active at all (Kintaichi et al., 1990). The peak activity
temperature range is generally from 573 to 773 K. Liu and Woo (2006) reviewed the
influences of these different parameters.

Common for both metal oxide and zeolite-based catalyst is the poor low temperature
activity, which is especially desired during the cold start period. In contrast, supported
noble metal catalysts (Pt/Al2O3, Rh/Al2O3) are highly active at low temperatures (< 523
K). Drawbacks are the very narrow temperature window and the moderate selectivity to
N2, due to substantial formation of N2O, which is a pollutant by it self.

As a conclusion, no single catalyst satisfying all the practical demands for HC-SCR
is up to now available. Mechanical mixtures of several systems were investigated by
some researchers and lead to interesting features such as low temperature activity, wider
temperature window and higher selectivity. However, up to now the tolerance to sulfur
and water is not sufficient for a practical application (Liu and Woo, 2006).
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3 High-throughput reactor automatization

3.1 Introduction

High-throughput techniques, such as for instance the synthesis and screening of organic
molecules for their activity or their potential as drugs, are well established techniques
in the pharmaceutical industry. In the field of heterogeneous catalysis and material
research, the interest in high-throughput techniques for the discovery of new functional
materials has received considerable interest in the last years (Baerns and Holena, 2002,
Hahndorf et al., 2002, Kiener et al., 2003, Murphy et al., 2003, Schuth and Demuth, 2006,
Schuth et al., 2002, Weinberg and McFarland, 1999). High throughput techniques are
parallelized screening techniques ranging from a massive degree of parallelization and
rather low information depth of the analysis in the case of the so called stage I screening,
and a high information depth but a lower degree of parallelization in the case of stage II
screening. In this work, for the optimization of deNOx catalysts, an accurate analysis
with a high information depth is needed and therefore a stage II screening concept will
be used.

In this chapter first the assembly and automatization of a 49 parallel stainless steel
gas-phase reactor set-up bought for this project will be described and afterwards the
set-up will be tested and checked by performing several measurements.

3.2 Concept of the set-up

A flow diagram of the stage II screening set-up installed during this work is shown in
figure 3.1. The set-up consists of the 49 channel parallel reactor, the analysis device and
several gas feeds. The flow system is build up using fittings, valves and capillary tubings
of stainless steel from Swagelok. First the gas feeds are mixed together to obtain a feed
with the right gas composition (A). The feds with a high flow rate are first fed in and
afterwards the ones with a low flow rate, to obtain a good and reproducible mixing. The
gas mixture is than fed into the parallel channel reactor (B), where the flow is equally
distributed into each of the 49 channels of the reactor. Subsequently each channel of the
reactor is connected to the analysis device. The interconnecting capillary is denoted as
analysis line or analysis capillary (C). The other 48 gas streams not connected to the
analysis device are mixed together and feed into the exhaust line (D). The selection of
the channel to analyze is done by the multiport valve. The analysis is performed by a
FTIR Nicolet Avatar 370 from Thermon Electron using a small gas cell for a fast analysis.
The complete system is pressurised using metering valves from Swagelok and two low
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pressure manometers from WIKA for the exhaust and analysis line. The FTIR gas cell
is heated to 403 K.

In figure 3.2 a closer look at the reactor and the multiport valve is given. The reactor
was bought from the hte company (hte) and is a state-of-the-art system for stage II solid
catalyst testing under real-world conditions. The heating of the reactor is achieved by
48 heating elements, which are placed around each reactor channel as can be seen in
figure 3.2C. They provide a homogeneous temperature distribution and an accurate and
responsive temperature control. Graphite gaskets are used to seal the reactor also at
high temperatures.

The multiport valve is a construction from the fein mechanic department at the
Max-Planck-Institut für Kohlenforschung (coal research). The exact description can be
found in the PhD thesis from Hoffmann (2002) and Kiener (2004).

3.3 Automatization

For an autonomous and continuous operation of the set-up, the reactor heating, the
multiport valve and the analysis device have to be automated and synchronised with
each other. To change the gas composition during the reaction, the mass flow controllers
have also to be automated. However, in this work the gas composition was constant for
all experiments, therefore it was not necessary to automate the gas streams. They were
just set once to a specific value before each experiment.

The heating elements of the reactor are controlled by a Mini8 controller from Eu-
rotherm. The controller is capable of accepting commands from a RS232 serial line
using the Modbus serial protocol or from an Ethernet connection over TCP/IP using the
Modbus TCP protocol. In both cases it is also possible to use an OPC server, which is
capable of speaking the Modbus protocol. Using an OPC server, it is possible to open
an OPC datasocket connection for instance from Labview to write and to read records
to the Mini8 controller. In figure 3.3 a schema showing the different possibilities to
communicate with the Mini8 controller is given.

Rotation of the multiport valve is achieved by using a high torque motor model
SECM268 from EC motion controlled by a SMCI 46 controller from Nanotec. The SMCI
46 controller is capable of accepting data from a RS232 serial line.

The FTIR Nicolet Avatar 370 system is controlled through a parallel line by OMNIC,
a commercial software from Thermo Electron.

All these three independent devices have to be automated and synchronized to work
together. For this purpose a Labview program was written, tested and continuously
revised throughout this work. The next sections will describe the features of the Labview
program and of the automatization process at the final state of their development.
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Figure 3.1: Flow diagram of the 49 channel reactor set-up.

Figure 3.2: Images of the 49 parallel channel reactor setup: (A) top view on the open
reactor, (B) closed reactor (C) bottom view on the thermo elements and
reactor capillaries, (D) side view on the complete setup, (E) gas streams and
mass flow controllers, (F) multiport valve and stepping motor and (G) side
view on the complete setup with insulation.
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Figure 3.3: Mini8 protocols and communication possibilities.

3.3.1 Communication process

The Labview program is responsible for managing several automatization tasks: it controls
the temperature of the reactor, the position of the valve and analyzes the data obtained
from the FTIR software. Additionally, the Labview program is also capable to store the
analysed data directly into a SQL database. The data storage and management process
will be described more in detail in section 3.4.

To synchronize the different devices, a simple solution based on the use of a shared
memory and a communication protocol was implemented. The communication process is
intended to synchronise the Labview program with the FTIR software. In figure 3.4 a
simple petri net illustrates this concept.

The communication is done through text files which have to be accessible at the same
time by the Labview program and the FTIR software. For instance this can be achieved
by using text files, which are located on the same hard drive or on a common network
share. Thus it is possible to install and to operate the FTIR software on a different
computer than the Labview program. The main loop of the communication process in
figure 3.4 can be described as follows:

When the state is 4, the Labview program changes the valve position by one step
by sending a sequence of bits to the control of the motor through the serial line. Before
setting the state to 5 the Labview program waits a certain time, which should be equal
or greater than the dead time of the set-up. After the dead time, the state is set to 5 and
the FTIR software starts to record a predefined amount of spectra of the gas stream in
the IR cell. Afterwards it sets the state to 4, to give the Labview program the instruction
to change the valve position. The analysis of the obtained spectra is than done by the
FTIR software automatically using OMNIC macros. The macros analyze the spectra
and write the results of the analysis into a text file. This file is being processed by the
Labview program, which recognizes new entries and starts to convert the intensities to
concentrations and to calculate the mean and the standard deviation of the data. During
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Figure 3.4: Control and data flowchart of the Labview - FTIR - SQL Database commu-
nication process represented as a petri net.

this process, the actual temperature, the valve position and some additional information,
as for instance the time, are written into text files, which are processed by the FTIR
software during state 5.

The FTIR software is setting the state to 4 directly after the measurement of the
spectra but before performing the actual analysis. This was done, because generally the
dead time of the set-up is longer than the time needed to analyse the spectra, hence the
time of the analysis is gained, which results in a time reduction of approximately one
minute per analysis.

3.3.2 Temperature control

The temperature control of the reactor is kept very simple in the version of the Labview
program developed for this work. The Labview program gives the reactor control a
setpoint on the basis of a linear ramp. The user just has to enter the start, and the
end temperature and the ramp in Kelvin per hour The controller used to reach this
setpoint is a PID controller. The proportional, integral and differential portion of the
controller have to be trained previously using the iTools software. The training was

14



Chapter 3 High throughput experimentation and reactor automatization

done at an intermediate temperature of 573 K and no overshooting could be observed
afterwards for all temperatures. In the case of a too big gap between the reactor and the
setpoint temperature, the Labview program stops the ramp and waits until the actual
temperature reaches the setpoint temperature within a range of 5 Kelvin. A detailed
study of the temperature characteristics of the reactor will be given in section 3.5.1.

The Labview program communicates with the temperature controller (Mini8) using
an OPC datasocket connection through an Ethernet line. The records can be read or
written simply by opening a connection specified by a so called URI. An example for a
valid URI to read or write the setpoint record of the controller is:

opc://localhost/Eurotherm.ModbusServer.1/Network.192-168-0-50-502-ID001-Mini8.Loop.1.Main.WorkingSP

Where localhost is the location of the OPC server and 192.168.0.50 the IP address
of the reactor control.

3.3.3 Multiport valve control

The multiport valve is connected to a motor which can be controlled through a serial
line from a computer. The controller of the motor (SMCI 46) is programmable and has
a small memory to store the previously defined programs. The program used in this
work moves the multiport valve by one step. The Labview program just has to send a
start command through the serial line to initiate the rotation of the motor. The start
command for the program currently selected in memory is a 0x04 character. One should
note, that it is not possible to get the actual position from the controller of the motor,
thus the Labview program has to memorize the actual position.

3.3.4 FTIR automatization

The control and the automatization of the FTIR analyser is essentially done by the
macro system included in the OMNIC software. Using this system, it is relatively easy
to control the FTIR hardware, to manipulate and analyze the spectra and to report the
results. For each component, the spectrum is evaluated at two points. Representative
source code listings for the synchronization and automatization can be found in the
appendix C.

In a normal experiment, the resolution of the FTIR system was set to 1.0 cm−1, the
aperture to 100 and the gain to 8. Generally 8 scans were taken for each spectrum and a
total of four spectra was recorded for each analysis. The obtained data is written into a
machine readable text file and processed by the Labview program. The data management,
storage and visualisation process will be described in more detail in the following section.
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3.4 Data management and visualisation

3.4.1 Data storage

The storage and post-processing of the obtained data sets was designed to be as flexible as
possible. As stated before, first the data obtained from the FTIR is stored into a machine
readable text file. This text file is being read and analyzed by the Labview program.
The Labview program converts the intensity values from the FTIR to corresponding
concentrations using previously measured calibration curves and calculates the mean
and the standard deviation for each data point. The data is then directly stored into
a MySQL database, which can be installed on any computer, which can be located
in the in local intranet or even in the Internet. This is achieved by sending the data
enclosed into a HTTP-GET request to a webserver. In appendix A in figure 3.3 the
Labview source code is shown. This connection is also possible through a HTTP proxy to
bypass possible blocking firewalls. The HTTP-GET request is then processed by a PHP
script running on the webserver. The PHP script decodes the data points, sorts them
according to the corresponding catalysts and experiments and afterwards stores the data
into the database. In such a way, the acquired data can be directly visualized online on
a website during the experiment. It is possible to monitor the reactor from an arbitrary
remote computer, which is connected to the Internet. Also the final analysis is being
reduced drastically, which is done in this version of the data management concept by a
Matlab script. This final analysis could even be completely omitted, by incorporation of
all calculations and fittings into the PHP script. In this version of the automatization
concept, it was chosen to do this final analysis of the data using Matlab, mainly due to
the limited time resources available for this project. In the next section the database
design to store the data into will be emphasised a bit more.

3.4.2 Database design

The database designed for this project is a very simple relational database consisting of
three main tables to store the experimental data. In figure 3.5 a representation of the
database structure is shown.

During the data storage into the database by the Labview over HTTP to MySQL
wrapper as described in the previous section, each measurement (table: ’Analysis’) is
stored and linked to the corresponding catalyst (table: ’Individual’) through the fields
’IID’, ’ValvePos’ and ’EID’. The catalysts are then linked to the experiments (table:
’Experiment’) by the field ’EID’. This makes it easily possible to search and to sort for
catalysts and for measurements. Before each experiment, the new population of catalysts
is generated automatically by the genetic algorithm and stored into the table ’Individual’.
Only the table ’Experiment’ has to be filled up manually using the HTML based interface
to the MySQL database.
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Figure 3.5: Database structure of the deNOx SQL database.

3.4.3 Final post-processing and visualisation

As stated before, the final analysis is done by a Matlab script. The other option, to
directly analyze and visualize the data online on a website, was not implemented, mainly
due to the limited time resources. In further studies, the online analysis could reduce the
post-processing time significantly.

In brief, the post-processing essentially tries to reduce the error of the available data,
by rejecting outlier data points and by calculation of the standard deviation δ of each
measurement. It also corrects the temperature of each reactor channel by using the
temperature correction matrix obtained during the measurements of the temperature
distribution as will be described in section 3.5.1.

For NO, C3H6 and NOx = NO + NO2, the conversion is calculated according to the
following equation:

Xi(t) =
ci(0)− ci(t)

ci(0)
± δci(t)

ci(0)
(3.1)

The conversion of NO to NO2 and N2O is obtained as follows:

Yi(t) =
νici(t)

cNO(0)
± δνici(t)

cNO(0)
(3.2)

thereby νi is 2 in the case N2O and 1 in the case of NO2. In the case of N2, the NO
conversion to N2 can not be directly calculated using this equation, because N2 is not
detectable by FTIR. From the measured concentration values for NO, NO2 and N2O in
the effluent gas stream the following equation can be used to calculate the conversion to
N2:

YN2(t) =
cNO(t)− cNO2(t)− 2cN2O(t)

cNO(0)
± δcNO(t) + δcNO2(t) + 2δcN2O(t)

cNO(0)
(3.3)
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A smoothed spline is used to fit the data. Generally the NO to N2 conversion was
fitted. The weighted least square regression method is used to minimize the sum of
square residuals. Outlier data points are identified during this process automatically and
afterwards the fit is recomputed. From this fit, the objective functions, the maximal
conversion to N2 and the temperature at which the maximal conversion Tmax,Y occurs
are obtained. The genetic algorithms used in this work try to minimize the objective
functions. Therefore the obtained values are normalized and converted to the final
objective functions, using the following equations:

f1 = 1− YN2 (3.4)

f2 = 1− Tmax,Y − 800K

150K− 800K
(3.5)

Figures of all catalyst for all calculations are automatically generated and saved as
images files for visualisation and manual analysis. In appendix C the pseudocode of the
final post-processing is listed in algorithm C.1.

3.5 Measurements and results

3.5.1 Temperature characteristics

The temperature characteristics of the reactor with an external insulation was measured
using up to 16 type N thermocouples. The thermocouples are connected to the Mini8
controller and thus, it is possible to use the Labview program to obtain and to record
the temperature for each thermocouple at the same time. The insulation of the reactor
consists of ceramic fiber wool plates of 5 to 10 cm depth.

Heating and cooling behaviour

As already mentioned in the previous section, the heating system of the reactor consists
of 48 heating elements, which are controlled by a PID controller. All the 48 elements
are treated together as one heating device. The controller was trained previously at an
intermediate temperature of 573 K using iTools.

In figure 3.6 the heating behaviour with and without a temperature ramp is shown.
In the case of the heating-up of the reactor without a temperature ramp the set-point
was set to a constant temperature of 473 K. In the second case, a linear temperature
ramp of 200 Kelvin per hour was used to reach the new set-point. The set-point value
was calculated by the Labview program. In both cases the starting temperature was 313
K. After reaching the set-point the heater was automatically switched off by the Labview
program.

In both cases no overshooting could be observed, which is very important, because
the cooling of the reactor takes much more time than the heating. In the second case,
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Figure 3.6: Heating-up behaviour of the reactor in the case of a controlled heating with
and without temperature ramp.
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Figure 3.7: Cooling-down behaviour of the reactor, with and without insulation.
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where a temperature ramp was used to reach the new set-point, it can be seen, that the
actual temperature of the reactor is following the linear ramp with a high accuracy and
also linearly.

The cooling behaviour of the reactor is shown in figure 3.7. As expected, the cooling-
down follows an exponential trend and takes much more time than the heating-up of the
reactor. As can be seen in figure 3.7, the cooling rate can be increased by removing the
top insulation of the reactor. The cooling time with insulation from a stating temperature
of 773 K is about 12 h, whereas the cooling time without insulation at the top is about
half of it.

Temperature distribution

The horizontal temperature distribution of the open reactor was measured with 16 type
N thermocouples at 373 K, 573 K and 773 K for all 49 channels independently in a depth
of 77 mm. The thermocouples were connected to the Mini8 controller and read out by
the Labview program developed to control the reactor. In figure 3.8 the results are shown
for the three temperatures in relative units. For the inner channels the temperature is
about 1.5 % above the temperature measured at the edge of the reactor. For instance at
a reactor set-point temperature of 700 K, the inner channels would be approximately 10.5
K hotter than the channel located at the edge. As can be seen the relative deviations
are essentially constant for all three temperatures. Thus it is reasonable to calculate the
average relative deviation for each reactor channel and to use these values as correction
factors.

The vertical temperature distribution of the open reactor measured for 8 different
channels at 573 K (not shown here) reveal that the temperature variates much stronger
vertically than horizontally. This is certainly also due to the open reactor, but measure-
ments of the vertical temperature distribution of the closed reactor carried out by the
hte company (hte), also indicated an important temperature variation. It is therefore
very important to always place the catalyst bed at the same height into the cartridges.

3.5.2 Flow distribution

A uniform and homogeneous flow distribution is very important for good and reproducible
results. Several aspects have to be considered and influence the flow distribution. Most
important is the pressure drop of the system. The pressure drop in the exhaust and
analysis line should be significantly (more than 10 times) higher than the pressure drop
of the packed bed in the cartridges. The pressure drop in the exhaust and analysis line
for an unpressurized system is mainly due to the pressure drop in the capillaries. An
estimation of both pressure drops is possible using the Hagen-Poiseuille equation in the
case of the pressure drop of the capillaries and the Ergun equation for the pressure loss
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Figure 3.8: Average relative temperature distribution of the open reactor in percent
measured at three different temperature. 100% represents the set-point
temperature and only the deviations are plotted. The dotted lines show the
location of the profiles, shown in the top and right inset figure.

of the packed bed:

∆pcapillaries =
8ηlV̇

πr4
(3.6)

∆pbed = λ · Hbed

dp

· ρV̇ 2

2
(3.7)

with λ =
1− ε

ε3

(
3.5 + (1− ε)

300

Re

)
(3.8)

where ∆pi is the corresponding pressure drop, l the length of the capillaries, V̇ the fluid
velocity of the gas stream, r the radius of the capillary, Hbed the height of the packed
bed, dp the particle diameter, ε the void fraction of the packed bed and Re = vρdp/η the
Reynolds number.

The length of the capillaries is about 35 cm, with a diameter of 1.59 mm. For a N2

flow of 50 ml/min and a particle diameter of 500 µm, the Reynolds number is roughly
one. The generally accepted value for the porosity of a randomly packed bed of uniform
spheres is 0.36 (Reyes and Iglesia, 1991). According to equation (3.7) the pressure drop
due to the packed bed for a space velocity of 20000 GSHV h−1 can be calculated to 13 Pa.
The resulting pressure drop in the capillaries is about three times higher than the one
due to the packed bed. This estimate shows, that the higher pressure drop is as desired
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located behind the packed bed, but not as significant as it should be. By additionally
controlling the pressure drop of the exhaust and of the analysis line by using mass flow
controllers or valves, the pressure drop behind the packed bed can be increased. It should
be set to a value such that the flow rate in the analysis line is the 49st part of the total
flow rate.

In this work, the pressure of the exhaust line was set to 1.15 · 105 Pa (15000 Pa
overpressure) using the valve for the exhaust line. The flow rate in the analysis line was
then set to the correct value, by changing the pressure drop of the analysis line using a
low flow valve. The resulting pressure in the analysis line was roughly the same as in the
exhaust line, which is an indication for a good flow distribution. The flow rates were
measured using a soap bubble meter.

The next part of the reactor which influences the flow distribution is the diffusor
plate, which is placed between the top of the reactor and the reactor channels. The
diffusor plate consists of 2 mm bores opening into conical holes on top of each cartridge.
The main task of this plate is the prevention of backmixing, due to the high linear flow
through the small bores. Another task is to provide a homogeneous flow distribution.
However, more important for the flow distribution is the control of the pressure drop
after the packed bed.
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Figure 3.9: Flow distribution of the 49 parallel channel reactor measured at 20000 h−1.
The theoretical average flow rate in each channel should be 52 ml/min.

The flow distribution was measured at 20000 h−1 corresponding to a total flow rate
of 2566 ml/min and a theoretical flow rate of each reactor channel of about 52 ml/min.
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The distribution was measured with catalyst loadings just like under reaction conditions
with a soap bubble meter connected to the analysis line. In figure 3.9 the measured flow
distribution is shown. An average flow rate in the reactor channels of 51.43 ml/min is
reached during the experiment. As can be seen in the right of figure 3.9 the distribution
is very narrow with a standard deviation of 0.36 ml/min. This indicates a very good
flow distribution with an error of less than 1%.

3.5.3 Empty conversion

The activity of the empty reactor was first checked for the new reactor in a preliminary
test. During all experiments, one channel was always left empty to check, if the blank
activity is increasing over time. In figure 3.11 the maximal conversion of NO to N2 is
shown for 25 reactor channels. The reactor only has a slight activity for the combustion
of propene; the reduction of NO under oxygen rich conditions seems to be a too difficult
reaction and nearly no activity was observed for all experiments carried out during this
work.

3.5.4 Catalytic activity and conversion distribution

Throughout this work the industrial 5%-Pt/Al2O3 noble metal catalyst will serve as
reference. In figure 3.10 the catalytic activity is shown. As can be seen, the selectivity
towards N2 is most of the times less than 0.5 and a number of byproducts is formed.
At maximal NO conversion also the yield to N2O is maximal. At higher temperatures
propene is easily oxidized by oxygen and most of the NO is converted to NO2 but not
any more to N2. The very narrow temperature window of the NO to N2 conversion arises
from this competitive system of reactions. The Pt/Al2O3 system has been extensively
studied by several scientists in the last decades (Burch et al., 1998, Captain and Amiridis,
1999).

The conversion distribution of the reactor was obtained by placing the same amount
of the reference Pt/Al2O3 catalyst from the same batch into 24 channels of the reactor.
The other 24 channels were left empty to see if the reactor channels are influencing each
other. This should not be the case if the flow rate and the dead time are high enough
to guarantee stable conditions. The typical settings for the reactor and the FTIR used
throughout this work for the catalytic measurements are listed in the appendix B.

Figure 3.11 and 3.12 show the distribution of the maximal conversion of NO to N2

and the temperature at which the conversion is maximal (the so called peak temperature).
The calculation of these two objective functions was done just as described in section
3.4.3 using equation 3.3 to calculate the conversion of NO to N2 from the measured
concentrations.

The conversion distribution shown in figure 3.11 is very narrow with a standard
deviation of 0.0167 corresponding to an error of about 3.4 %. The maximal deviation
from the average value is about 0.03 (6 %). This error can be interpreted as the error of
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Figure 3.10: Catalytic activity of Pt/Al2O3 under lean burn conditions.

the reactor system and is sufficient for a stage II screening. In the case of the distribution
of the peak temperature of the NO to N2 conversion the error is even smaller as visualised
in figure 3.12. The standard derivation is about 2 K. Also it can be easily seen, that the
channels are not influencing each other. The maximal conversion of the empty channels
is in no case higher than 0.03.
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Figure 3.11: NO to N2 conversion distribution measured with Pt/Al2O3.

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

 

�

P
ea

k 
te

m
pe

ra
tu

re
 o

f N
O

 to
 N

2 c
on

v.
 (K

)

��
����� ���������

��
�� 
� �	����� �� �� �����

490

492

494

496

498

500
 

�

P
ea

k 
te

m
pe

ra
tu

re
 o

f N
O

 to
 N

2 c
on

v.
 (K

)

Figure 3.12: Peak temperature distribution of the NO to N2 conversion.
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4 High-throughput synthesis

4.1 Introduction

Solid catalysts are highly complex materials. A material with a very high surface area
but without an active phase will show no activity. Even a material with a highly active
phase, but which is not accessible to the molecules due to a low surface area, a too small
pore system or other hindrances, will show no or only a very low activity. Hence, one
general requirement necessary to obtain a highly active catalyst is to provide a surface
area high enough, such that the active phase is accessible for the reacting molecules.
This is due to the fact that heterogeneous catalyzed chemical reactions basically occur on
surfaces or at phase boundaries, thus a higher surface area would, theoretically, directly
result in an improved reactivity.

In high-throughput experimentation not only a fast set-up for catalyst testing but
also a fast and reproducible synthesis of solid catalyst is required. The synthesis of mixed
oxides with multiple components, providing a high surface area, is often very difficult.
Schwickardi et al. (2002a) developed in 2002 a synthesis route for high surface area
mixed oxides, which is easily parallelizable. The method is based on the hard templating
route (Schuth, 2003, Schwickardi et al., 2002a,b), which made it possible to obtain multi
component oxides with a high BET surface area in the range of 50 m2/g to 200 m2/g,
using a very easy synthesis, based on inexpensive components.

In the following section first the synthesis route will be described and afterwards
some of the properties of these materials will be shown.

4.2 Synthesis of mixed metal oxides

In brief, the synthesis was carried out using an activated carbon as exotemplate, which
was impregnated with highly concentrated metal nitrate solutions. The carbon and the
nitrate precursor were afterwards calcined at high temperature, leading to a combustion
of the carbon exotemplate and the formation of a metal oxide framework. This complete
process was carried out in a high-throughput fashion by using a synthesis robot for the
mixture of the nitrate precursors and for impregnation of the active carbon. Up to 80
catalysts can be prepared in such a way in parallel per day. The different steps of this
synthesis procedure will be depicted in detail in the following sections.
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4.2.1 Activated carbon as exotemplate

The basic idea of templating is shown in figure 4.1A. A porous material with an intercon-
necting pore system is generally used, in order to form a high surface oxidic material
as a replica of the original pore structure. A high loading and an interconnecting pore
structure is necessary to obtain a material that is negative to the structure of the template.
In contrast, if the exotemplate does not have a continuous pore system or if the loading
of the metal precursor is not high enough, small particles are obtained as shown in figure
4.1B.

���

���

Figure 4.1: Schematic representation of the exotemplating pathway to produce porous
and high surface area mixed oxides. In figure (A) the pore system of the
exotemplate is continuous and the resulting material corresponds to a negative
copy of the template. In figure (B) the resulting material is not 3D connected
any more due to a bad impregnation, only a partial filling of the pore system
of the exotemplate or a non-continuous pore system, leading to the formation
of small particles. Adapted from (Schuth, 2003).

In this work, the activated carbon R1424 from Carbotec / Rütgers was chosen as
exotemplate, because of its exceptional properties: the purity is high and the BET surface
area (1800 m2/g) and the pore volume (0.9 cm3/g) are very high. The particles are
almost uniform spheres of 200 to 400 µm diameter as can be seen in figure 4.2B and
4.2C by scanning electron microscopy (SEM) imaging (see appendix A). The adsorption
isotherm in figure 4.2A indicates, that the pore structure consists of a very high fraction
of micropores with a diameter less than 1 nm. All these properties make this activated
carbon an ideal exotemplate for catalyst preparation. Additionally, to make sure that
the quality of the activated carbon is the same for all samples, only activated carbon
from the same activation batch was used. The synthesis is reproducible as will be shown
later in this chapter, the resulting metal oxides have a high surface area, are in parts
crystalline or amorphous depending on the metal concentration, and are most of the
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times uniform shaped spheres, just like the activated carbon precursor particles. For
some metal compositions, the spherical structure collapses and the resulting structure is
not spherical any more, but in most of the cases, a regular shape can be assumed, which
is very important to compare the results obtained by testing the catalytic activity in the
reactor.
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Figure 4.2: Figure (A) shows the adsorption isotherm of activated carbon R1424 con-
taining a large fraction of micropores and nearly no meso- or macropores. In
figure (B) and (C) SEM images of activated carbon R1424 particles with a
diameter of 200 to 400 µm are shown.

4.2.2 Impregnation and calcination

The impregnation was carried out using an automated liquid handling robot from
ABIMED as can be seen in figure 4.3. This is not the most advantageous way to
impregnate the activated carbon, but a manual synthesis would not be efficient enough
for this project. Schwickardi et al. (2002a) studied different types of impregnation under
various conditions and it was observed, that the best results are obtained by vigorous
stirring of the active carbon, while adding highly concentrated metal salt precursors.
As metal precursors all kind of different metal salts, as for instance nitrates, sulfates,
chlorides, alkoxides, acetates or acetylacetonates are possible. The best results with
respect to surface area were obtained by impregnation using nitrates. In this work all
the metal precursors were 2 M solutions of the corresponding nitrates. Martinez Joaristi
found out, that a small amount of isopropanol reduces significantly the surface tension of
the nitrate solutions and thus improves the penetration of the precursor molecules into
the pore system. A small amount of isopropanol was therefore added to all solutions.

One of the most important parameters influencing the impregnation is the amount of
solution added per amount of active carbon. The ratio of added volume of the precursor
solution and the available pore volume of the active carbon is denoted as spv-ratio:

spv-ratio =
Vsolution

mAC · vpore

(4.1)
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Figure 4.3: ABIMED liquid handling robot robot for automated precursor mixing and
impregnation of activated carbon (Martinez Joaristi, 2007).

where Vsolution is the volume of the precursor solution in milliliter, mAC the mass of the
activated carbon in gram and vpore the specific pore volume in milliliter per gram of
activated carbon.

A spv-ratio of 1.0 would mean an impregnation with an amount of precursor solution
corresponding exactly to the volume of the pores, hence the pores would be completely
filled without solution remaining outside. A spv-ratio less than 1.0 would therefore mean
that the pores are not completely filled with solution, a ratio higher than 1.0 means there
is still some solution outside the pores. In this work a spv-ratio of 1.1 was used for the
automatic impregnation with the robot. A small excess of solution is important for this
kind of impregnation in order to be sure, that the metal salts solutions are wetting all
the activated carbon, also at the bottom of the quartz glasses (see figure 4.3). This is
important, as the metal nitrates catalyse the combustion of the activated carbon and
regions of dry carbon would not be combusted completely during the calcination.

The calcination was afterwards performed without additional drying process always in
the same oven at a temperature of 973 K for three hours for all samples in this work, if not
otherwise specified. This calcination temperature is rather high, but a full combustion of
the carbon is guaranteed under these conditions. Such a high temperature improves also
the ability to form crystalline phases, which could be active in deNOx. However, it is
important to note, that especially for samples with a low amount of aluminium oxide,
the metal particles tend to sinter leading to catalysts with low BET surface area. This is
due to the fact, that aluminium is able to form oxides with a high surface area and is
thus good for providing the support framework for the remaining metal oxides.
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4.3 Results and reproducibility of the synthesis

The reproducibility of the synthesis was checked by performing several test on a series of
ten equal catalysts composed of a ternary metal oxide supported on aluminium oxide.
The synthesis was performed exactly as previously described with the help of the liquid
handling robot (see figure 4.3) and a spv-ratio of 1.1. The catalysts were impregnated
with a nitrate mixture consisting of 70 % Al, 12 % Cu, 6 % Fe and 12 % Ce (denoted as:
Al-0.70-Cu-0.12-Fe-0.06-Ce-0.12). To check the reproducibility and to quantify the error
of the synthesis, physisorption, XRD and catalytic measurements were performed. The
results are visualized in figure 4.4 and 4.5. The catalytic tests were performed under the
same reaction conditions just like all other catalytic measurements in this thesis (the
exact conditions are listed in appendix B). The experimental conditions for physisorption
and XRD measurements are described in appendix A.
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Figure 4.4: Catalytic activity (A) and N2 physisorption (B) measurements of ten Al-
0.70-Cu-0.12-Fe-0.06-Ce-0.12 mixed oxide samples synthesized by automated
synthesis with the help of the ABIMED robot.

The results indicate that the reproducibility is high enough for a stage II screening
approach. The maximal NO to N2 conversion of the metal oxide catalyst Al-0.70-Cu-0.12-
Fe-0.06-Ce-0.12 is 0.133± 0.007 and the peak temperature of the maximal conversion
618.6± 7.1 K. This corresponds to an error of about 5 % (standard deviation) in the case
of the peak conversion and of less than 1.5 % in the case of the peak temperature. The
maximal error in the case of the peak conversion is roughly 9 % as can be seen in figure
4.5 and corresponds to the maximal possible error of the catalytic test together with
the synthesis procedure. The error of the physisorption results is about 9 % (standard
deviation) for the BET surface area and for the measured total pore volume at p/p0

= 0.98. However, this error is composed of the error of the synthesis, the error of the
sorptometer, and the error of the analytical balance used to measure the weight of the
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Figure 4.5: Boxplots of ten Al-0.70-Cu-0.12-Fe-0.06-Ce-0.12 mixed oxide samples synthe-
sised by automated synthesis showing the distribution of the maximal NO
to N2 conversion (A), the peak temperature of the NO to N2 conversion (B)
and the BET surface area obtained by N2 physisorption.

sample. The error obtained by this catalytic test is therefore the relevant error for the
interpretation of the optimization results.

Additionally to the reproducibility check of ten identical samples, the morphology of
the calcined metal oxide catalysts was studied by scanning electron microscopy. Results
of selected samples are shown in figure 4.6. Nearly in all of the cases a very good negative
replication of the activated carbon exotemplate was obtained. During the calcination,
generally the particle diameter diminished slightly to 100 to 300 µm. In very few cases
the structure collapsed completely as can be seen for the case of Al-0.667-Ni-0.333 in
figure 4.6. This result is reproducible for single component oxide only containing Ni.
As can be seen in the case of Al-0.5-Cu-0.20-Ni-0.20-Co-0.08-Fe-0.02, as an example
of a multi component oxide, the resulting particles are not spherical any more, due to
an anisotropic shrinkage during the calcination process. The particles are mechanically
stable, but in all cases broken particles could be observed. During the loading of the
reactor the sample glasses were always shaked slightly, in order to settle the smaller
particles to the bottom of the sample glasses, so that the reactor is only loaded with
intact particles.

31



Chapter 4 High-throughput synthesis

����������	���


 ����������
�������������� ��������
�������������

�������������������	������

��������������




Figure 4.6: SEM images of several mixed oxide samples synthesized by exotemplating
and automated impregnation.
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5 Evolutionary multi-objective optimization

5.1 Introduction

Optimization can be defined as the search for solutions, which solve a problem in an
improved or even optimal way. Optimal means, that the solution to the problem is the
best solution in the feasible region. Two different types of optimal solutions exist: the
one which are optimal in the complete feasible region, the global optimal solutions, and
the one, which are only optimal in a subspace of the feasible region, the local optimal
solutions.

A set of known or unknown variables generally span the so called search space, which
can be constrained. Optimization problems, which do not require the definition of
an objective function are called feasibility problems, but in general single or multiple
objective functions are to be minimized or to be maximized.

Especially real world problems often involve the simultaneous optimization of several
and often competing objectives. In the case of only one objective the solution is clearly
defined and only one possible solution exists. In contrast, in the case of multi-objective
optimization, where we try to optimize all the objectives at the same time, the situation
is completely different, as two optimal solutions may be different to each other. The
optimal solution is thus a composition of all optimal solutions with respect to multiple
objectives and usually form a set of optimal trade-off surfaces, which also include the
single objective optimum. Generally, the goal in multi-objective optimization, is to
approximate this set of optimal solutions. Several techniques were developed to solve
this kind of problems ranging from classical techniques (Loganathan and Sherali, 1987,
Rosenthal, 1985), which are trying to reduce the search field by weighting the objectives
with respect to their importance, to modern and rather sophisticated algorithms (Li,
2003, Shelokar et al., 2002, Zitzler and Thiele, 1999). The concept of a weight based
approach to combine several objective functions into one overall objective function f is
illustrated by equation 5.1:

f(x) =
∑

i

wifi(x) (5.1)

where fi are the objective functions and wi the corresponding weights (0 ≤ wi ≤ 1). A
problem that arises in the case of weight based techniques, is how to normalise, prioritise
and weight the contribution of the various objectives.

In the following chapter the algorithms used in this work will be described in detail
and tested on several theoretical test cases, with similar properties as the deNOx problem.
Also one focus will be the design and encoding of the deNOx problem and the experimental
results obtained during the optimization. Preliminarily to this, a brief overview of some
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techniques and definitions with a focus on experimental multi-objective evolutionary
optimization will be given.

5.1.1 Evolutionary computing

In the last three decades there has been a growing interest in problem solving systems
based on evolutionary techniques found in nature (King et al., 2005). Genetic algorithms
are one type of evolutionary optimization methods, others are, for instance, swarm-based
optimization algorithms (Li, 2003, 2004, Reddy and Kumar, 2007, Santana-Quintero
et al., 2006). Such kind of systems are heuristic global search methods, as they include
heuristic strategies to search the search space in an intelligent way. Non-heuristic, but
stochastic global search methods are, for instance, Monte-Carlo based methods like
simulated annealing (Suman, 2004, Suppapitnarm et al., 2000) or parallel tempering
(Liu, 1999). Genetic algorithms involve techniques which are inspired by evolutionary
biology: they maintain a population of potential solutions and the solutions undergo
recombination, mutation and selection steps during each iteration. One iteration loop is
called a generation. After a certain number of generations the algorithm converges and
it hopefully finds the globally optimal solution. The basic structure of an evolutionary
algorithm is shown in algorithm 5.1.

t := 01

initialize P (t)2

evaluate P (t)3

while not termination-condition do4

t := t + 15

select P (t) from P (t− 1)6

alter P (t)7

evaluate P (t)8

end9

Algorithm 5.1: Structure of an evolution algorithm.

As can be seen in figure 5.1 three different metric spaces can be defined: the decision
space, where the solutions to the actual problem are defined, the individual or search
space, which is the representation of the individuals of the decision space, and the
objective space, which maps the individuals of the decision space according to their
fitness as will be shown in the next section. A decoder function is generally used to map
the search space to the decision space. The representation of a solution in the search
space is denoted as a chromosome.

Global search methods are typically stochastic and only very few deterministic methods
exist. One deterministic global optimization method is, for instance, the terminal repeller
unconstrained subenergy tunneling algorithm (TRUST), which was developed by Barhen
et al. (1997). In contrast, most of the local search methods are deterministic as for
instance the gradient descent method (Battiti, 1992) or the simplex algorithm Lagarias
et al. (1998), Watson and Carr (1979). It is important to note, that due to the stochastic

34



Chapter 5 Evolutionary multi-objective optimization

fmmapping function

individual i

objective function

decision vector x objective vector

decision space  objective space  

=  ( ) =   ( )

y

x   m i

Yindividual space XI

y   f x

Figure 5.1: Three common metric spaces in evolutionary computation: the search or
individual space, the descision space and the objective space (Zitzler, 1999).

nature of the algorithm only a certain probability of converging towards the global
optimal solution can be given. One can never be sure, that the algorithm was able to
find the optimal solution. Also the performance of a global search method for local
optimization is often inferior to the one for a deterministic local search method. However,
it is simple to hybridize a global search method with a local search method to combine
the strength of both.

5.1.2 The multi-objective optimization problem (MOOP)

An important difference between single- and multi-objective optimization was already
given in the introduction. To be more precise, the fact that a trade-off front must exist
during multi-objective optimization is, that there is no natural sort order of points of the
n-dimensional Euclidean space, if n ≥ 2. Hence, a solution can not be directly compared
to another and a subspace of optimal solutions with respect to the multi-objective
problem exists, which is generally denoted as the Pareto-optimal set. The concept of
Pareto-optimality will be described in more detail in section 5.1.3. Some examples of
multi-objective optimization problems (MOOP) are:

• The design of microwave absorbing structures, with simultaneous optimization of
performance and cost (Cui et al., 2005).

• The minimization of the pulsation of the burner and of the emissions during a
combustion process (Buche et al., 2002).

• The maximization of the yield of cyanobacteria and of the cell growth or the optical
density of the cells at 730 nm (OD730) during media optimization in biotechnology
(Havel et al., 2006).
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A MOOP can be defined as finding a vector of decision variables x in the decision
space X, which optimizes a vector function

f : X→ Y (5.2)

by assigning the quality of a specific solution x to a vector of objective variables y in the
multi-dimensinal objective space Y.

5.1.3 Pareto-optimality and concept of domination

To compare solutions to each other in the objective space, most of the popular multi-
objective optimization algorithms use the concept of Pareto dominance. An objective
vector y(1) is said to dominate another objective vector y(2) in the objective space Y if
no component of y(1) is less good than the corresponding component of y(2) and at least
one component evaluates better:

y(1) � y(2) ∧ y(1) 6= y(2) (5.3)

The same concept can also be applied to the decision space X. One should note that
optimal, so called non-dominated solution vectors may be mapped to different objective
vectors. This means, that there may be several non-dominated objective vectors.
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indifferent
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dominated
is

f2

f1 f1
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Figure 5.2: Schematic example of Pareto optimality (left) and the possible relations of
solutions (right) in the objective space (Zitzler, 1999).

The set of optimal solutions in the decision space X is generally denoted as the
non-dominated set or the Pareto-optimal set X∗ ⊆ X, and its image in the objective
space is denoted as the Pareto-optimal front Y∗ ⊆ Y. A globally Pareto-optimal set is
the non-dominated set in the entire search space X, whereas a locally Pareto-optimal set
can be defined as: if ∀x ∈ X∗ no y in the neighbourhood of x dominates any member of
the set X∗, then the solutions constitute a locally Pareto-optimal front.
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The concept of domination and of Pareto-optimality is shown in figure 5.2. Both
objective functions f1 and f2 are to be maximized. Solution A is a member of the Pareto-
optimal front and is not dominated by any other solution (solution A is a non-dominated
solution). Solution B is not a member of the Pareto-optimal front and is dominated by
solution A but dominates the solutions C and D. Solution E is indifferent relative to
solution B but dominates solution D.

5.1.4 Experimental optimization

A certain class of optimization problems often arise in experimental sciences. These
problems are denoted in this work as experimental optimization problems. Generally, the
fitness evaluation is difficult or costly and limits the total number of possible evaluations
or generations strongly. In experimental optimization the maximum possible number
is in the range of 5 to 10 generations, or 200 to 500 evaluations, which is very low in
comparison to a normal genetic optimization process, where several hundred generations
or thousands of fitness evaluations can be performed. The limiting factors in experimental
optimization are generally time, cost or other resources.

An other characteristic of experimental optimization is the fact, that often the fitness
evaluation is not highly accurate, which leads to a noisy objective space. Also often
it is not possible to parallelize the fitness evaluations and thus each individual in a
population has to be evaluated consecutively. Knowles (2006) developed a hybrid genetic
algorithm which incorporates a local search learning heuristic, which is updated after
each function evaluation. The results seem promising, but this heuristic is hard to adapt
to the deNOx problem in this work, because the evaluation is done in parallel for the
complete generation.

As already mentioned, typical for experimental optimization is an inaccurate fitness
evaluation, leading to a noisy objective space. The optimization algorithm has to be
able to deal with such a noisy landscape. Genetic algorithms already incorporate the
feature to deal with noise, which is due to the fact that these algorithms are stochastic
and not deterministic and always keep several solutions (a population) in parallel: A
high selection pressure or even a deterministic selection would not be able to deal with
noise and would therefore be a bad choice for noisy environments. However, much
more important to be robust against noise is to keep a set of solutions in parallel. This
is due to the simple fact, that the signal to noise ratio of a population improves and
the role of outlier solutions is minimized. Therefore a genetic algorithm with a large
number of individuals in a population would be more robust with respect to noise than
an algorithm with only small populations (Hammel and Baeck, 1994, Miller and Shaw,
1996). The choice of the population size is a critical factor, as a too big population leads
to a slower convergence and a too small population is more likely to converge towards a
local optimum. For experimental optimization this choice is very difficult, as the number
of maximal evaluations is strongly limited. Therefore a large population, which is very
robust against noise, may not be the best choice, as the convergence is very low and a lot
of evaluations have to be performed. The theoretical minimal number of individuals in a
population in order to reach each point in the search space by a binary crossover from a
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randomly created start population was investigated by Reeves (1993). This condition is
fulfilled with a certain probability p, which is a function of the chromosome length l and
the population size M :

p(M, l) = (1− 0.5M−1)l (5.4)

For a binary chromosome with 27 genes, a minimum population size of 19 individuals
would be required to reach each point in the search space by crossover with a probability
of 99.99%. Also it is important to note, that algorithms which keep parents along the
evolution process are likely to suffer in the case of a noisy environment, because solutions
receiving a fortuitously good evaluation will be kept. It is very important to keep the
necessary turnover for a good evolution. It was shown by Hancock (1994) that a way to
implement this, is to remove old solutions during the evolution process. The removal of
old individuals from the gene pool performs only slightly worse than a model, which does
not keep parent solutions (a so called generational model) in the presence of noise. In
figure 5.3 the effect of noise for different systems is shown. A Gaussian random variable
with a standard deviation of 0.2 was therefore added to the true values to achieve a
significant performance reduction.

Figure 5.3: Evolution with and without evaluation noise, for a model that does not keep
parent individuals (a generational model) and a model that keeps parent
individuals (an incremental model). The removal of the oldest individual
from the population is denoted as kill oldest and the removal of the individual
with the lowest performance as kill worst. A linear ranking selection was
used in both cases as mating selection algorithm (Hancock, 1994, 1997).

In this work, the number of parallel fitness evaluations is limited by the size of the
reactor and the complete evaluation process (synthesis and catalytic test) takes one
week. In the following sections the implementation of the multi-objective optimization
framework will be described with a focus on features regarding experimental optimization.
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5.2 Optimization framework

The platform and programming language independent interface for search algorithms
(PISA) (Bleuler et al., 2003) was chosen to build up the optimization framework used
in this work. PISA was recently developed by Beuler et al. in order to reduce the
programming and implementation overhead for the application engineer and to facilitate
the use of different optimization methods on different test problems. The idea behind
PISA was to divide the implementation of an optimization method into an application-
specific part, as for instance the deNOx problem in this work, and in an algorithm-specific
part. Figure 5.4 shows this concept. This concept is highly flexible, as it makes it possible
to use an arbitrary programming language for the implementation of the application-
specific part and the algorithm-specific part can be used without any implementation
effort. This reduces potential implementation errors significantly. Also due to this concept
it is possible to separate physically the application-specific from the algorithm-specific
part (for instance by running them on different operating systems), which is sometimes
very useful.

In this work the application-specific part was written in Octave and runs under
FreeBSD. Octave is a free programming language, which is mostly compatible to Matlab.
The application-specific part is denoted as variator, as it includes all the variation
operators of an evolutionary algorithm. The algorithm-specific part is denoted as selector,
as it performs the ranking and selection of individuals. Several selector algorithms can be
found on the PISA website and can be used without any change. In order to run under
FreeBSD, only the source code had to be compiled. In figure 5.5 a general model of a
search algorithm according to the PISA concept is shown. As can easily be seen, most
of the evolutionary operations are performed by the variator, the selector is completely
independent from the variator and has its own memory to remember former populations.
The variator and selector modules interact through text files. A detailed description of
the communication process between both modules can be found in (Bleuler et al., 2003).
In the following sections, the variator and selector algorithm and their implementation
will be described in detail. The pseudocode of the Matlab variator module is listed in
appendix C (algorithm C.2).

5.2.1 Variators

As already mentioned, the complete implementation of the variator module was done in
Octave. The module is able to deal with binary or real coded chromosomes and with
different initial (α), offspring (λ) and parent (µ) populations sizes. A list of random
numbers is included in the package, in order to have reproducible optimization runs if the
random seed is kept constant. This, for instance, is required especially in experimental
optimization, where sometimes the optimization process has to be restarted from the
beginning.

The following variation operators were implemented for binary encoded chromosomes:
a classic bit-flip (one gene) mutation, with different probabilities for individuals or
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Figure 5.4: Illustration of the concept underlying PISA. The applications on the left hand
side and the multiobjective optimizers on the right hand side are examples
only and can be replaced arbitrarily (Bleuler et al., 2003).

�
� �

Figure 5.5: Model of a general search algorithm. Circles stand for individuals and the
external boxes give examples of operators which could perform the respective
basic operation (Bleuler et al., 2003).
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genes to undergo a mutation. Also it is possible only to select chromosomes which
didn’t pass a recombination to mutate. For recombination, one-point, two-point and
uniform crossover operators are possible. If the chromosome consists of real numbers,
the simulated binary crossover (SBX) operator (Deb and Beyer, 2001) was implemented
in the case of chromosome recombination and a polynomial mutation operator (Deb and
Goyal, 1996) for mutation. A detailed review of theses variation operators can be found
in (Back et al., 1997).

The fitness evaluation is done experimentally. The results of the experiments are
written into text files, which are than read by the variator module. The new populations
generated by the variation process are also written into text files and into the same
MySQL database, which is also used to store the results from the reactor, as described
in chapter 3.

Nojima et al. (2005) studied the effects of removing overlapping solutions. These are
solutions which have the same positions in the search or in the objective space. They
found out, that in the case of a binary tournament selection the diversity increased
significantly if overlapping solutions are removed. For a higher order tournament selection
the effect was not pronounced any more. This is due to the fact, that both removal of
solutions and the binary tournament selection increase the diversity of solutions. In this
work, overlapping solutions in the search space were replaced by new solutions created
by the variation operators in order to increase the diversity of the population.

A decoder for the encoding of the deNOx problem, in order to satisfy the constraints
during variation, was also included into the variator module. Encoding and handling of
resulting constraints will be discussed later in chapter 5.3 and 5.4.

5.2.2 Selectors

In a simple genetic algorithm, selection schemes are basically used to select individuals
for the later variation or mating process depending on their fitness. This kind of selection
is also called mating selection. The main parameter influencing the mating selection is
the selection pressure. It is the degree to which the better individuals are favored. The
convergence rate of the evolution process is predominantly determined by the magnitude
of the selection pressure. However, if a too high selection pressure is applied, the chance
to find the global optimum decreases and the loss of diversity of the population is high.
On the other hand, a too low selection pressure leads to a slow convergence, which is
especially in experimental optimization not desired. The most common mating selection
schemes are tournament selection, (µ, λ)-selection, linear ranking selection and stochastic
universal selection. In this work a tournament selection, with a tournament size of 2 with
a selection intensity of 1/

√
π (Blickle and Thiele, 1995) was used. The loss of diversity

in the case of a binary tournament selection is significantly less than for instance in the
case of a linear ranking selection (Blickle and Thiele, 1995). A complete comparison and
review of mating selection schemes was done by Blickle and Thiele (1995) and can also
be found in the handbook of evolutionary computation (Back et al., 1997).
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In more sophisticated evolutionary algorithms, additionally to providing selection
pressure, the selection schemes also try to preserve the population diversity by using
special, so called environmental selection operators. The goal of these operators is
not only to find the optimal solution to the problem, but for instance in the case
of single-objective optimization also to find local optimal solutions. In the case of
multi-objective optimization the preservation of the diversity, in order to have a good
distribution of solutions along the Pareto-optimal front, is highly desired. In both cases,
the environmental selection generally helps to keep a diverse population and to avoid
premature convergence.

The third important feature of the selection process is to be able not to loose good
solutions during the evolution process. This concept is called elitism and several studies
agreed, that elitism is very important to improve the performance of a genetic algorithm.
In multi-objective optimization elitism is generally implemented by using a second
population, which is called the archive population. The archive population keeps track
of the best individuals.

The exact implementation of mating and environmental selection in combination with
fitness assignment and the handling of the archive population depend on the specific
selection algorithm. In this work, three multi-objective selection algorithms, namely
NSGA2 (Deb et al., 2002), SPEA2 Zitzler et al. (2002) and IBEA (Zitzler and Kunzli,
2004), were tested on theoretical optimization problems and two of them (SPEA2 and
IBEA) were applied to the experimental deNOx optimization problem. These three
algorithms will be described more in detail, because the understanding is fundamental
for the analysis of the results. Common to all of these three algorithms is the fact, that
they use an internal memory, also called archive population, to keep track of the best
individuals found so far. The selection of the individuals to keep in the archive is the
environmental selection, whereas the selection of the individuals from the archive is the
mating selection, which is as previously mentioned done in this work by tournament
selection. In this approach new individuals in the archive are preferred over old individuals.
The major difference between NSGA2, SPEA2 and IBEA is the implementation of the
environmental selection and of the diversity preservation algorithm.

Non-dominated sorting algorithm version 2 (NSGA2)

The non-dominated sorting genetic algorithm version 2 (NSGA2) was developed by
Deb et al. (2002). It is based on NSGA developed by Srinivas and Deb (1994). NSGA
incorporates the idea to use a non-dominated sorting procedure in conjunction with
a sharing technique, as suggested by Deb and Goldberg (1989). The non-dominated
sorting groups the individuals of a population to several fronts according to their level of
non-domination and assigns fitness values to each of these fronts. The same fitness value
is assigned to all members of a front in order to give an equal reproductive potential. The
first front is constituted by the non-dominated individuals. The diversity is maintained by
applying sharing methods (Deb and Goldberg, 1989, Goldberg and Richardson, 1987) to
each front separately. This causes multiple optimal solutions to co-exist in the population.
NSGA2 a non-dominated sorting algorithm with a reduced computational complexity was
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developed, which is denoted as fast non-dominated sorting. The diversity preservation
was improved by replacing the sharing function approach of NSGA with a so called
crowded comparison approach (Deb et al., 2002). The crowded comparison does not
require any additional user defined sharing parameter and has a better computational
complexity. A special density estimation technique is incorporated in NSGA2. It is based
on the so called crowding distance, which is obtained by calculating the average distance
of two solutions (i − 1 and i + 1) on either side of a solution i and gives an estimate
of the size of the largest cuboid enclosing of solution i. The solutions in a population
are afterwards sorted according to their crowding distance and their density is obtained
by assigning relative distance values to each solution. Using the crowded comparison
operator, the overall fitness is calculated with respect to the non-domination rank and
the crowding distance. The NSGA2 procedure is also visualised in figure 5.6.

sorting
Non−dominated Crowding

distance
sorting

Rejected
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t
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Figure 5.6: A representation of the NSGA2 algorithm. Rt denotes a combined population
of the parent population Pt and the offspring population Qt. Fn are non-
dominated fronts of different order, which are ordered according to their order
of non-domination.

Strength Pareto evolutionary algorithm version 2 (SPEA2)

The strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele, 1999) was a new
approach to multiobjective optimization in 1999. It was mixture of established and at
that time new techniques in order to approximate the Pareto-optimal set. The concept of
Pareto dominance (see section 5.1.3) is used in order to assign scalar fitness values to the
solutions. Solutions that represent a non-dominated front among all solutions considered
so far are stored externally. The average linkage clustering method (Morse, 1980) is
used as parameter-less niching method to reduce the number of stored non-dominated
solutions and to preserve the diversity in the population. In 2002, Zitzler et al. (2002)
presented an improved version of SPEA which tried to incorporate new ideas and to
eliminate potential weaknesses. The main differences of SPEA2 in comparison to SPEA
are: an improved fitness assignment scheme, which takes for each solutions into account
how many other solutions it dominates and it is dominated by, a new clustering and
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truncation technique, namely the nearest neighbor density estimation technique, which
is also able to preserve boundary solutions in the archive. Furthermore, the archive size
in SPEA2 is fixed, i.e. if the number of non-dominated solutions is less than the archive
size, the archive is filled up by dominated solution. In contrast, in SPEA the archive size
is variable. Finally, in SPEA2 only members of the archive population participate in the
mating selection process.

It was found, that SPEA2 performs better on all tested problems than its predecessor
SPEA and performs better that NSGA2 for some problems. The best overall performance
at the time of the development of SPEA2 was achieved by NSGA2 and SPEA2 (Zitzler
et al., 2002).

Indicator-based evolutionary algorithm (IBEA)

Recently Zitzler and Kunzli (2004) proposed a new method to direct the search of an
evolutionary algorithm towards the Pareto-optimal front. The indicator-based algorithm
(IBEA) is based on performance measures (indicators), which are integrated into the
multiobjective search. It uses an archive population just like in the case of SPEA2,
however, this approach is different from the dominance based approaches (as for instance
NSGA2 and SPEA2) as it does not require any special diversity preservation mechanism.
The idea behind IBEA was to design a flexible algorithm, which is able to deal with
different preference information. Most of the multiobjective evolutionary algorithm
implement in some way preference information, as for instance to minimize the distance
to the Pareto-optimal set and to maximize the diversity of the solution set, but the
preferences are not clearly defined and only emerge as a result of the implementation of
the algorithm. The idea of preference information was first investigated by Fonseca and
Fleming (1998) and Knowles (2002). With IBEA, Zitzler and Kunzli (2004) proposed
a general implementation for multi-objective optimization, which does not need any
diversity preservation techniques. It uses binary quality indicators to compare solutions
of a population pairwise. Several indicators, as for instance the hypervolume indicator
IHD or the ε-indicator can be used to assign fitness values to the population members.
The easiest way to assign the fitness is simply to sum up the indicator values for each
population member with respect to the rest of the population. The resulting fitness
value is a measure for the loss in quality if the corresponding member is removed from
the population. The concept of the ε and the hypervolume binary quality indicators is
shown in figure 5.7. The hypervolume indicator measures the volume of the space that
is dominated by B but not by A with respect to a predefined point. The ε-indicator
works similary, but does not compare the hypervolume. The indicators return a pair of
numbers, which indicates that A is strictly better than B (IA ≤ 0∧ IB > 0), or neither A
or B is stricly better than the other (IA > 0 ∧ IB > 0). However, if IA is less than IB,
then in a weaker sense, A is better than B. A detailed comparison of IBEA, SPEA2 and
NSGA2 and of both quality indicators can be found in (Zitzler and Kunzli, 2004). For
most problems IBEA was found to perform significantly better than SPEA2 or NSGA2.
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Figure 5.7: Illustration of the two binary quality indicators implemented in the PISA
version of IBEA (on the left hand side the ε-indicator and on the right hand
side the hypervolume indicator) (Zitzler and Kunzli, 2004).

5.3 Encoding

During the development of a genetic algorithm to solve an optimization problem, the
encoding, that is the representation of the decision space of a given problem by a data
structure, is one if the most important parts. An inconvenient encoding of the decision
space, which is in principle equal to inconvenient variation operators, can be as much or
even more disastrous than a bad choice of the parameters for the optimization or of the
algorithm for the selection process.

The classical way to encode a problem are data structures such as binary vectors. The
so called binary encoding is typical for genetic algorithms. When using more complex data
structures, such as vectors of floating point numbers, binary or floating point matrices or
even trees or networks, the algorithm is generally called evolution strategy in the case of
floating point vectors or evolution program in the case of more complex data structures
like trees. The crucial part when using complex data structures is to adapt the genetic
operators to produce meaningful offsprings.

The encoding of the individuals should be natural, but at the same time it should
preferably be able to represent the decision space without encoding not allowed individuals.
This is in real world problems generally a very difficult task, especially if the problem is
highly constrained or in parts combinatorial.

Natural means, that no complex transformations on the decision space are necessary
to encode the problem and that the genetic operators are able to produce desired effects
during recombination or mutation of the individuals.

For instance, for the traveling salesman problem (Bellmore and Nehause.Gl, 1968,
Held and Karp, 1970), the binary representation of a tour is not well suited, since a
change of a single bit may result in an illegal tour. A more natural encoding is the
use of binary matrix chromosomes, since it encapsulates all the information about the
sequence, including topologies of city to city connections. It is therefore possible to
develop operators that can produce desired effects while preserving the properties of the
tour (Michalewicz, 1999).
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In this work binary vectors are chosen to encode the catalyst. This decision will be
further explained in the next sections.

Encoding of the deNOx problem

A total of 11 elements in different combinations and varying concentrations compose
the search space of the deNOx problem. The elements can be classified into three
groups: elements acting as support with a high mole fraction in the catalyst, the main
elements with a probably major contribution to the catalytic reactivity of the catalyst,
and elements acting as promotor, with only a small mole fraction in the catalyst. As
stated before, aluminum was chosen as element for the support, copper, nickel, cobalt,
iron, manganese, lanthanum, cerium and samarium as main elements and potassium and
strontium as promotors.

Some boundary conditions were introduced to reduce the search space and to incor-
porate chemical knowledge into the encoding. Systems with and without support are
treated separately:

C.1 The maximal number of main elements in a catalyst is less or equal than four.

C.2 For systems with support, the aluminium concentration has to be higher than
33.3 mole-% and less than 95.0 mole-%. The individual concentration of the main
elements is limited to 35 mole-%.

C.3 For systems without support, the maximum allowed aluminium concentration in a
catalyst is 33.3 mole-% and the individual concentration of the main elements is
unrestricted.

C.4 Only a maximum of two elements from the lanthanoid series are allowed to be at
the same time in a catalyst.

C.5 The sum of the concentrations of the promotor elements is limited to 5.0 mole-%;
it is possible that a catalyst contains both promotor elements.

Superimposed to these self-introduced boundary conditions is the fact, that the total
sum of all concentrations equals 100 mole-%. For both systems aluminium constitutes
the remainder, but the total sum of mole fractions of main and promotor elements is not
allowed to be higher than the minimal support mole fraction (constraint C.6).

Encoding of the element combinations

A variety of encodings can be thought of to encode the combinations of the elements.
For such combinatorial problems the binary representation is generally used for encoding
(Back et al., 1997, Michalewicz, 1999). Vectors of integer numbers could also be used,
but special genetic operators would be required. The most direct way of binary encoding
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is to use for each element one bit. Wolf et al. (2000) used this encoding for a very similar
problem, but without any additional constraint. Limiting the number of elements for each
catalyst (constraint C.1) leads to a combinatorial problem, where all valid combinations
can fit into less than eight bits. For instance the unique number of combinations of four
elements out of eight is 8!/(4!(8− 4)!) or 70. Under consideration of constraint C.4 all
the combinations fit into six bits, which is significantly less than eights bits if one bit is
used for each element. In section 5.5 these two encodings will be tested using reasonable
test functions.

Encoding of the element concentrations

In contrast to the combinatorial and discrete problem of encoding of the element com-
binations, the encoding of the element concentrations is a continuous problem. For
such problems the use of an evolution strategy with floating point vectors as data type
seems to be the natural way to represent the search space properly. However, the use of
binary vectors has some important advantages, especially when dealing with experimental
optimization problems.

Wolf et al. (2000) used an evolution strategy for the encoding of the concentrations.
Using on the one hand binary vectors for the element combinations and on the other
hand floating point vectors for the concentrations, it is not straightforward to develop
a recombination operator for the whole vector. Baerns and Wolf treated both parts of
the chromosome separately. Only a mutation operator was applied to the floating point
vector, thus the advantages of a properly chosen recombination operator could not be
played off. Also the schema theorem (Rudolph, 1994, Schmitt, 2001) is only valid for the
binary part of the vector.

The use of continuous data structures in experimental optimization only makes sense
if the experimental error of the design variables tends towards zero. Typically the
experimental procedures are not as accurate and an unintentional discretization of the
search space occurs. Therefore a binary encoding seems to be more reasonable. The
step size should be significantly higher than the expected experimental error. Another
advantage of the discretization of a continuous problem, is to reduce the accuracy and
thus the dimension of the search space to promote a faster convergence (Hannes and
Weuster-Botz, 2006).

In this thesis the concentrations are discretisized into 16 steps and a binary represen-
tation of four bits for each concentration is chosen. Due to the maximal number of 4
main elements in a catalyst, 16 bits are required for the encoding of the concentrations.
A linear distribution of these 16 steps would lead to a step size of about two or six for the
systems with and without support respectively. Using the ABIMED robot for synthesis of
the catalyst, the minimal volume which can be handled is about 1-3 µl, hence a minimal
step size of 5 µl (0.5 mole-%) is reasonable.

The discretization of the problem, also allows the use of different step sizes and thus
to incorporate some problem specific knowledge to the encoding of the problem. Most
of the metal oxides form spinel phases at 33 mole-%, thus these concentrations should
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Figure 5.8: Final encoding of the deNOx problem using 11 bit for the combinatorial part
of the problem.

be encoded regardless of the step size. Also it could make sense to use a smaller step
size for the region below 15 mole-% and around the spinel concentrations, in contrast,
the step size at high loading can be more coarse. In table 5.1 the discrete concentration
encodings (genotypes) with the corresponding decoded values (phenotypes) are listed. In
figure 5.8 the final encoding of the deNOx problem is shown.

5.4 Handling constraints

Michalewicz (1995) investigated several techniques to deal with constrained problems. In
brief these are: (a) the design of two evaluation functions for the feasible and infeasible
domains, (b) the rejection of infeasible individuals (death penalty), (c) the penalizing of
infeasible individuals by penalty functions, (d) the use of so called repair functions to
repair infeasible individuals and (e) the adaptation of genetic operators and the use of
special representations to maintain a feasible population. This list is surely not complete,
but summarizes some of the most popular techniques. The application of these methods
may also vary, for instance after repairing an infeasible individual, it can be used for
evaluation purpose only, or it can replace the original and infeasible individual in the
population (Lamarckian evolution (Whitley et al., 1994)).

In experimental optimization, the evaluation of the fitness is typically the limiting step,
also the population size is given on the basis of the experimental evaluation procedure.
In high-throughput experimentation, a good choice of the population size is a multiple of
the number of simultaneous parallel experiments that can be analyzed in one go. For
the parallel reactor system of 49 capillaries used in this work, a reasonable population
size is thus a multiple of 49 individuals. To keep the experimental evaluation time short
with respect to maximal capacity, also all these capillaries should preferably be used
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genotype phenotype (mole-%) phenotype (mole-%)
with support without support

0000 0.5 2.0
0001 1.0 4.0
0010 2.0 8.0
0011 4.0 12.0
0100 6.0 16.0
0101 8.0 20.0
0110 10.0 25.0
0111 12.0 30.0
1000 16.0 33.3
1001 20.0 35.0
1010 24.0 40.0
1011 28.0 50.0
1100 32.0 63.3
1101 33.3 75.0
1110 34.1 88.0
1111 35.0 100.0

Table 5.1: Discrete encodings of the element concentrations.

for evaluation. Therefore option (b), the rejection of infeasible individuals, which is,
due to its simple implementation, a popular option in many evolutionary techniques,
seems not to be good for experimental optimization. Also it is known (Michalewicz,
1999, page 320), that this option only works reasonably well, when the search space is
convex and constitutes a large fraction of the whole search space. Also the option (a)
and (c), apart from being difficult to implement, do not seem to be reasonable options in
experimental optimization, because the experimental evaluation system is used below
maximal capacity.

In contrast options (d) and (e), the maintaining of a feasible population by special
representations, genetic operators or repair functions, seem to be a good choice in the case
of experimental optimization, as the evaluation system is used at maximal capacity. The
possibilities to maintain a feasible population using different representations have already
been discussed in section 5.3. Since it is relatively easy to repair infeasible individuals
in the case of the deNOx problem, repair functions will be used to repair both invalid
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combinations of elements and invalid concentration ranges.

Input: chromosome with invalid combination of elements
Output: chromosome with valid combination of elements

if number of valid elements = 0 then1

select a random gene from the element combination and apply the bit-flip2

mutation operator on it.
else3

while number of valid elements > 4 do4

select a random gene from the element combination.5

if gene = 1 then6

apply the bit-flip mutation operator on the selected gene.7

end8

end9

end10

Algorithm 5.2: Repair algorithm of the combinatorial part of the chromosome

Input: chromosome with invalid concentration ranges
Output: chromosome with valid concentration ranges

valid := false1

while not valid do2

if
∑

(PromotorConc + ElementConc) > 1 - MinSupportConc then3

decrease the element concentration by one step for a randomly chosen4

element
else if

∑
(PromotorConc + ElementConc) < 1 - MaxSupportConc then5

increase the element concentration by one step for a randomly chosen6

element
else7

valid := true8

end9

end10

Algorithm 5.3: Repair algorithm of the continuous part of the chromosome

5.5 Evaluation of parameters and encoding scheme

Deb et al. (2001) described a method to develop test functions for multi-objective
optimization. These functions are easy to construct, scalable to any number of objectives
and decision variables and the Pareto-optimal front is exactly known. Also it is easy to
control the hindrance to converge to the true Pareto-optimal front.

In order to use the best possible encoding, genetic operators and parameter sets for
the deNOx problem, several test problems from (Deb et al., 2001) were used to create a
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new test problem, with some properties very close to the actual deNOx problem. Before
developing the new problem, some of the original test problems will be discussed and
evaluated using the optimization framework developed in this work. For this the number
of objective functions in all the cases is set to two and the number of decision variables
to four, just like for the experimental deNOx problem.

5.5.1 Theoretical test problems

Test Problem DTLZ1

The DTLZ1 problem is a simple test problem with a linear Pareto-optimal front. Two
different versions will be used for testing, the original DTLZ1 problem with many local
Pareto-optimal fronts and the DTLZ1-easy version with only one Pareto-optimal front.
The problem is defined as:

Minimize f1(x) = xP (1 + g(x)) x1

Minimize f2(x) = xP (1 + g(x)) (1− x1) (5.5)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, 3, 4

where

g(x)DTLZ1 = 100

(
4 +

4∑
i=1

(
(xi − xS)2 − cos (20π (xi − xS))

))
(5.6)

g(x)easy
DTLZ1 =

4∑
i=1

(xi − xS)2 (5.7)

for the original and easy DTLZ1 problem.

Test Problem DTLZ2 and DTLZ3

The next two problems have a spherical Pareto-optimal front:

Minimize f2(x) = xP (1 + g(x)) cos (x1π/2)

Minimize f2(x) = xP (1 + g(x)) sin (x1π/2) (5.8)

subject to 0 ≤ xi ≤ 1, for i = 1, 2, 3, 4

where g(x) is in the case of problem DTLZ2 the g function given in equation (5.7) and
in the case of problem DTLZ3 the function given in equation (5.6). Hence DTLZ3 can
also be named as the hard version of DTLZ2.

For all these test problems, the Pareto-optimal solution corresponds to x∗ = (xS . . . xS)T .
The objective function values lie on a linear hyperplane of order 2 in the case of DTLZ1
and DTLZ1-easy:

2∑
m=1

f ∗m = xP (5.9)
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or on a spherical hyper-surface of order 2 in the case of DTLZ2 and DTLZ3:

2∑
m=1

(f ∗m)2 = xP (5.10)

Test problems DTLZ1 and DTLZ3 are good to test the ability of a MOEA to converge
to the global Pareto-optimal front. The easy versions of both problems are good to
construct new kinds of problems as will be shown in the next section. All these problems
can be modified, in order to test the ability to maintain a good distribution of solution by
using a variable mapping: xi → xα

i . Deb et al. (2001) suggested a parameter of α = 100.

Design of a new combinatorial problem

In order to simulate some properties of the deNOx problem, a new combinatorial problem,
build up using the test problems DTLZ1 and DTLZ2, will be designed in the following.

The deNOx problem consists of two parts: first, the combinatorial problem to find
the best combination of elements in a catalyst and second, the continuous part, where
for a certain combination the best concentration values have to be found. If only one
combination of elements would exist, the problem would only be a function of the element
concentration, and this problem would reduce to a continuous only problem, just like in
the case of the continuous test problem DTLZx described in the last section.

The combinatorial part of the deNOx problem, can for instance be modeled as different
combinations of the theoretical test problems (DTLZ1, DTLZ2, ...), of the absolute
location of the global Pareto-optimal front xP and of the x-values (the concentrations)
corresponding to the Pareto-optimal solution (xS . . . xS)T .

The xP -values, the values, which influence the location of the global Pareto-optimal
front as described by equations (5.9) and (5.10) for the linear and spherical front
respectively, can be used to describe the optimal activity of a main element. A small
xP -value for a certain element would describe its single activity without other elements.
Interactions could be simulated by adding a certain value ∆xP to the other xP -values in
order to influence its activity. This can also be done to influence interactions due to the
support or the promotor elements. The true location of the global Pareto-optimal front
x∗P of a combination of n elements and the x-values corresponding to the Pareto-optimal
solution xS can then be calculated using the following equations, if a linear relationship
is assumed:

x∗P =
1

n

n∑
xP +

∑
∆xP (5.11)

x∗S = x∗P (5.12)

The xP -values of the elements can be chosen arbitrary in the range from zero to one.
The ∆xP should not be too high, because the sum and not the mean value is added
to x∗P . For the deNOx simulation problem, table (5.2) gives an overview of the chosen
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Type Element xP ∆xP Problem

main component Cu 0.50 -0.10 DTLZ1-easy
main component Ni 0.60 0.10 DTLZ1-easy
main component Co 0.60 -0.05 DTLZ2
main component Fe 0.50 0.10 DTLZ1-easy
main component Mn 0.55 0.10 DTLZ1-easy
main component La 0.60 -0.05 DTLZ2
main component Ce 0.70 0 DTLZ2
main component Sm 0.65 -0.05 DTLZ2
promotor K -0.025
promotor Sr -0.025
with support Al 0
without support Al 0.1

Table 5.2: Parameters for the simulated deNOx test problem.

values. The problem with the highest number of incidences is chosen for the resulting
system. If the incidences of DTLZ1-easy and DTLZ2 are equal, DTLZ1-easy is chosen.

Using this test problem, the constraints C.1 to C.5 can be implemented just like for
the real deNOx problem. It is also possible to test the different encoding schemes and
the parameters of the MOEA with respect to the deNOx application. To also incorporate
constraint C.6 to the test problem, the lower and upper boundary of the decision variables
xi can be adjusted:

0 ≤ xi ≤ 2, for i = 1, 2, 3, 4 (5.13)

and a modified boundary condition C.6 can then be used:

n∑
i=1

xi ≤ 4 (5.14)

The global Pareto-optimal front of this problem is a combination of a Pareto-optimal
front from the DTLZ1-easy and DTLZ2 problem. More precisely the best combinations
are Al-Cu-K-Sr (DTLZ1-easy, with support) with x∗P = 0.35 and Al-Cu-Co-La-Sm-K-Sr
x∗P = 0.2875 (DTLZ2, with support). One should note that due to the different shapes
of the Pareto fronts from the two DTLZ problems a linear Pareto front from the DTLZ1
problem with a higher xP -value can still be better than a Pareto front with a lower
xP -value from the DTLZ2 problem. In figure 5.9 the Pareto-optimal fronts of DTLZ1
and DTLZ2 with xP = 0.5 and of the theoretical deNOx test problem are shown. The
combined DTLZ1 and DTLZ2 front clearly show, that this approach of constructing new
problems is indeed possible.

5.5.2 Performance metrics

To measure the quality of the solution found by an evolution algorithm, several perfor-
mance metrics need to be defined. The metrics used in this work are specifically defined

53



Chapter 5 Evolutionary multi-objective optimization

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

 DTLZ-1 (0.5)
 DTLT-2 (0.5)
 DTLZ-1 (0.35)

         + DTLZ-2 (0.2875)

 

 

f 2

f
1

Figure 5.9: Pareto-optimal fronts of the multiobjective DTLZ1 and DTLZ2 problems
and the here developped combinatorial and continuous theoretical deNOx
problem, which is a combination of DTLZ1 and DTLZ2. The number in
brackets correspond to the x∗P value. The results were obtained after 100
generations using SPEA2 and binary strings of 27 bit for each chromosome.
The population size was set to 24.

with respect to the test functions described in the previous section.

The first metric is the average of the xP -values of the solutions of the Pareto-optimal
front:

M1 =
1

N∗

∑
xP (5.15)

For the deNOx problem it was shown in the previous section that the Pareto-optimal
front is a combination of optimal fronts with two different xP -values. For a uniform
distribution of solutions on the Pareto-optimal front, more solutions will be found for
the linear region corresponding to the DTLZ1-easy problem with x∗P = 0.35. Hence the
minimal convergence metric M1 is not the average of 0.35 and 0.2875, but nearer to 0.35.
The best value found so far for M1 after 50 generations is about 0.33.

The second metric is defined as the average of the objective values for the solutions
of the Pareto-optimal front as defined by the equations (5.9) and (5.10). The difference
of both metric 1 and 2 is therefore a strong indication for the convergence rate of the
algorithm to a global or local Pareto-optimal front. Equation (5.9) can also be used to
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measure the performance of an arbitrary problem, where the real Pareto-optimal front is
unknown.

Additionally to these two metrics which are applied to the continuous part of the
deNOx problem, some information can also be gained about the quality to solve the
combinatorial part of the deNOx problem. As will be described in the next section, to
obtain statistically relevant data, each optimization run was repeated 50 times. Thus it is
possible to calculate the probability to find one or both of the best element combinations.
For instance if in 25 runs the algorithm was able to find both combinations, the probability
would be 50%.

5.5.3 Test cases

Several test cases have to be defined, to compare and to evaluate some parameters of the
variator module. For all test cases the initial, the parent and the offspring population size
was set to 24 individuals, which are binary encoded. The variation is done using a binary
bit-flip mutation and a one-point binary crossover operator. Tournament selection, where
one individual competes with two other individuals is used as environmental selection
algorithm. The test cases can be summarized as follows:

TC1: Encoding of the combinatorial part of the deNOx problem using 9 bit (6 bit for the
element combinations and 3 bit for the support and promotor combination). The
concentrations are encoded using for each concentration 4 bit, thus a chromosome
size of 25 bit is obtained. Only combinations of four out of 8 elements are encoded
in this version. The repair algorithm 5.3 is used to repair invalid concentration
ranges. A detailed description of this encoding can be found in section 5.3. The
probability of mutation was set to pm = 0.1 and the probability of crossover to
pc = 1.

TC2: Encoding of the combinatorial part of the deNOx problem using 11 bit. For each
element one bit, where a ’1’ denotes an active element and a ’0’ an inactive. The
concentrations are encoded just like in TC1. The total chromosome size is 27
bit. Invalid combinations and concentrations are repaired using the algorithms 5.2
and 5.3. The probability of mutation was set to pm = 0.1 and the probability of
crossover to pc = 1.

TC3: The same encoding as for TC2.
The probability of mutation was set to pm = 1/(chromosome size) = 0.037 and the
probability of crossover to pc = 1.

TC4: The same encoding as for TC2.
The probability of mutation was set to pm = 2/(chromosome size) = 0.074 and the
probability of crossover to pc = 1.

TC5: The same encoding as for TC2.
The probability of mutation was set to pm = 1/(chromosome size) = 0.037 and
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the probability of crossover to pc = 0. This encoding is denoted as multiobjective
random search.

TC6: The same encoding as for TC2.
The probability of mutation was set to pm = 0 and the probability of crossover to
pc = 1.

5.5.4 Theoretical results

In this section, first the results obtained for the different encoding schemes (TC1 and TC2)
will be discussed in order to choose the right encoding for the experimental optimization.
Afterwards different effects observed when varying the probabilities of the variation
operators will be investigated (TC2 to TC4). The two extreme cases (TC5 and TC6) will
show how an evolutionary algorithm without mutation competes against a multi-objective
random search in the case of a partially combinatorial and continuous problem, as for
instance the deNOx problem in this work.

All the tests were done using the three selector algorithms, SPEA2, NSGA2 and
IBEA, as described in section 5.2.2. Due to the fact that evolutionary algorithms are
nondeterministic each test was repeated 50 times using different random seeds for both
variator and selector modules to obtain statistically meaningful results.

Comparison of the encoding schemes

In figure 5.10 the two convergence metrics as specified in section 5.5.2 are visualized
for the test cases TC1 and TC2 after 5, 10, 20 and 50 generations for different selector
algorithms. The error bars are obtained from the standard deviation of multiple test
runs.

As can be easily seen, for all selector algorithms the second test case performs
significantly better than the first test case even after only few generations. Thereby the
difference between the first and the second convergence metric, which is an indication
of the convergence of the algorithm, decreases in the case of TC2 clearly, in the case of
TC1 nearly not. Nevertheless after 50 generations, both encoding schemes are able to
produce solutions lying on or near the Pareto-optimal front. This can be seen in figure
5.10, due to the fact, that the first metric nearly approaches the optimal value of 0.33 for
both test cases.

One should keep in mind, that TC2 is encoded with 2 bits more, therefore one would
expect it to perform worse than TC1. To understand the reason why the results for TC2
are much better, the probabilities of finding the two optimal combinations Al-Cu-K-Sr
with x∗P = 0.35 and Al-Cu-Co-La-Sm-K-Sr with x∗P = 0.2875 are shown in figure 5.11.
After only 5 generations, for both encodings, the probabilities of finding the optimal
solutions are relatively low. In this case the probability to find the optimal combination
with one main component (Al-Cu-K-Sr) is relatively high for TC2, while it is very low
for TC1. In contrast the probability to find the combination with four main components
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Figure 5.10: Convergence metrics M1 and M2 for TC1 and TC2.

(Al-Cu-Co-La-Sm-K-Sr) is comparable for both test cases. After 10 generations TC1 is
still nearly not able to find the combination with only one main component, while in the
case of TC2 the solution is found in more than 75% of the test runs. Here again, the
probability to find the combination with four main components is nearly the same for
both test cases. After 20 and 50 generations TC1 still performs poorly with respect to
find the combination with only one main component. In contrast, for most algorithms
the probability to find the combination with four main components is a bit higher for
TC1 than for TC2.

There are different aspects which have to be considered to explain the observed
phenomena. First it obvious, that for TC1, where only combinations of four main
components out of eight are encoded in the combinatorial part (6 bit), combinations
with less than four main components are much more difficult to find, because the only
possibility to obtain such a combination, is by setting the continuous part to zero. Thus,
some combinations are in this encoding only accessible through evolution of the continuous
part of the chromosome. This is much more difficult and leads to a low performance with
respect to these combinations. The incorporation of all possible combinations into the
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Figure 5.11: Probabilities of finding the optimal combinations for TC1 and TC2.

combinatorial part would solve this problem and leads to a better performance, but just
like for TC2 8 bit would be necessary the encode the combinations and some kind of
boundary conditions would also be necessary. Hence the more natural encoding with 8
bits and repair functions to satisfy the constraints was found to perform best, when using
the traditional one-point binary crossover operator. This is due to the fact, that the
traditional crossover operator is able to mate properties of the combinatorial part, because
each bit encodes a property. In contrast, the encoding of only valid combinations leads
to an un-natural mating, which is like a random crossover or another kind of mutation
operator. This problem could be solved, by using a specialized crossover operator, which
is able to mate the properties of two individuals just like in the case of TC2. In this
work the use of the classical crossover operator in combination with intelligent repair
algorithms to satisfy the constraints was chosen as preferred option.

The reason for the slightly better performance of TC1 with respect to the probability
of finding the composition with four main components after 20 and more generations
is due to the fact, that the algorithm in most of the cases only tries to reach a single
Pareto-optimal front and not the combination of both. The algorithm just finds one
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possible solution and converges with a slightly better performance than TC2 towards it.
Anyhow, the ability to converge towards both Pareto-optimal fronts without neglecting
one of them is a much harder problem to solve. After 50 generations it can be seen that
all the three selector algorithms are able in nearly 90% of the cases to converge towards
both solutions.

Influence of the crossover and mutation probabilities
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Figure 5.12: Results after 10 generations for all test cases.

To choose reasonable settings for the variator module, the probabilities of crossover
and mutation ware varied on the basis of the second encoding scheme. Previous works on
multiobjective optimization showed that a high rate of crossover is a good choice for most
problems (Grefenstette, 1986). This is due to the fact, that the evolutionary knowledge
gained during the optimization is mainly achieved by the mating in combination with the
selection process, as described for binary encodings by the schema theorem (Rudolph,
1994, Schmitt, 2001). In contrast the mutation operator serves as an option to avoid
the search of being trapped in a local Pareto-optimal front and to find new solutions to
the problem. The knowledge gained by the algorithm on the basis of the mating and
selection process may be disturbed by the mutation process. This distribution can be
favorable or not, depending strongly on the roughness of the search space, but in most of
the cases it will lead to individuals with poorer performance. Therefore, the mutation
rate is generally kept very small. A good choice for the mutation probability is equal or
greater than the inverse of the number of genes used for encoding the problem in the
case of binary encoding, because this would lead to at least one mutation per individual
in the population (Bremermann et al., 1966).

In figure 5.12 the results of the two performance metrics are shown after 10 generations
for all test cases. The results for TC2, TC3 and TC4, where only the mutation probability
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was varied from 0.037 to 0.1, are nearly the same. Only TC3 performs slightly better for
NSGA2 and IBEA than the two other test cases. For the experimental optimization the
mutation rate was set to 0.037 (TC3), which correspond to the inverse of the number of
genes used for the encoding (1/27). In the work from Wolf et al. (2000) the probabilities
for both crossover and mutation operator were not constant during the hole optimization
process, but were defined as a function of the diversity of the population. The diversity
was measured by calculation of the fraction of the average fitness of the population and
of the fitness of the best individual. In multiobjective optimization with more than only
one possible objective, the direct application of this diversity calculation is not possible.
A more sophisticated diversity calculation can be developed, but the effects of such
adaptation are uncertain. Also, for the selection algorithms used in this work, a diversity
preservation mechanism in the objective space is already implemented, thus the effects
caused by an additional adaptation of the variator rates are even more uncertain and
could lead to a significantly lower performance of the optimization process. Hence, in this
work constant probabilities were chosen to be adequate for the optimization. However,
the investigation of the influence of variable probabilities could be interesting and should
be considered for further studies.

The test cases TC5 and TC6 in figure 5.12 clearly show that an algorithm, where
only crossover or mutation is generating new solutions, is performing significantly worse
than an algorithm, which includes both variation operators (test cases TC2-4). Only
the combination of a recombination with a high probability and a mutation with a low
probability is able to find in a reasonable number of generations very good solutions to
the problem. However, the performance of TC5 and TC6 is similar, which is an indication
that the actual knowledge gained during the optimization process is mainly conserved
due to the selection step.

60



Chapter 5 Evolutionary multi-objective optimization

5.6 Experimental optimization of the deNOx problem

In this section all the previously described methods and results will be brought together
in order to optimize experimentally the complex deNOx problem. The methods needed
to evaluate the fitness of the catalysts were described in chapter 3. A 49-parallel channel
reactor set-up for stage II screening was build up an tested and showed a good accuracy
and a fast analysis, which is needed for a reasonable optimization procedure. The
synthesis of the deNOx catalysts was described and checked for reproducibility in chapter
4. The error of the synthesis and of the catalytic evaluation by the reactor was found to
be in the order of 5%. A description of the optimization framework and of the theoretical
aspects of evolutionary multi-objective optimization was given in the first part of chapter
5. In the second part the application of these methods to a real world problem, the deNOx
problem, will be demonstrated. It is very important to point out, that the optimization of
the deNOx problem, that is the problem of finding the best combination and composition
of elements in the catalyst, requires to keep all other parameters constant. For instance
the BET surface area is highly depending on the synthesis method and on the metal
loading and the catalytic activity of a catalyst is likely to suffer as a result of a low BET
surface area. Thus, not the ideal deNOx problem will be optimized. Only a boundary
problem, in which the systematic features of the synthesis and of the catalytic test act as
constaints to the ideal deNOx problem, will be processed.

In addition to the mere optimization of the deNOx system, it was chosen to compare
SPEA2 and IBEA. The reactor was therefore subdivided into two parts consisting of
24 reactor channels for each of the optimization algorithms. The population size for
each algorithm was chosen to be identical to the number of reactor channels used for the
evaluation (24). In a premilary test, 48 randomly chosen catalysts were tested and the 19
best catalysts were selected to build up the initial population. Additionally to these 19
randomly created catalysts, five selected single oxide catalysts (Cu,Mn,Ni on Al2O3) were
included into the initial population, which was the same for both algorithms, in order to
have the same starting point for the optimization process. Also all the parameters and
settings of the variation module were the same for both algorithms and are summarized
in appendix B.

5.6.1 Optimization results after seven generations

In figure 5.13 the evolution of the archive population is visualised by boxplots for both
objective functions and for both selection algorithms. As can be clearly seen, the average
fitness is improving with each generation. The population of the first generation, which
is represented by a black boxplot is identical for both algorithms. The second generation
already shows, that SPEA2 and IBEA are evolving in a slightly different way. SPEA2
was able to find a better solution for the NO conversion after seven generations than
IBEA. In contrast IBEA found a better solution with respect to the peak temperature
of the NO conversion. The best solution of each generation is represented by the lower
outlier of the boxplot. It can be seen, that the best solutions are not steadily improving
just like the average fitness of the archive population, but step-wise. For instance after six
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Figure 5.13: Evolution of the objective functions for the solutions of the archive popula-
tion.

generations SPEA2 was able to find the catalyst with the highest NO to N2 conversion,
which is a catalysts containing a small fraction of copper and nickel supported on a high
amount of Al2O3 as will be later shown. The best low temperature catalysts are catalysts
containing a high amount of cobalt or manganese and a smaller fraction of nickel or
copper on a small fraction of Al2O3. Another interesting result is the fact, that the boxes
representing 50% of the data are increasing in most of the cases and the length of the
upper and lower whiskers tend to decrease during the evolution.

Figure 5.14 shows the evolution of the occurrences of the archive population up to the
seventh generation. The maximal number of occurrences is 24 (the size of the population).
As stated before the initial population was created randomly, but the constraints C.1
to C.6 (see section 5.3) have nevertheless to be satisfied. This lead to the elemental
distribution of the first generation as can be seen in figure 5.14. The evolution shows a
clear trend for most of the elements. Systems with support (constraint C.2) are preferred
to systems without support (C.3), both algorithms are converging towards copper and
nickel containing catalysts. The convergence rate is, however, different for SPEA2 and
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Figure 5.14: Evolution of the occurrences of elements in the archive population for SPEA2
and IBEA.

IBEA. The trend of the promotor elements strontium and potassium is slightly different,
potassium shows a clear negative trend and disappears completely after three or four
generations in the case of SPEA2 and IBEA. In contrast strontium does not disappear
during the evolution but is neither increasing. The occurrences are constantly in the range
of two to three catalysts in the archive. The trend of manganese, samarium, lanthanum
and also cerium at higher generation number is negative. However, the elements do not
disappear completely, but in the case of manganese, samarium and lanthanum a clear
decrease is observed. The trend for cobalt and iron containing catalysts is not clear. The
occurrences of both elements seem to be fluctuating, and only a slightly positive trend
can be distinguished.

In figure 5.15A and 5.16A the archive populations of SPEA2 and IBEA for all
generations are visualised by Pareto-plots in the objective space. Since both objective
functions are to be minimized, the non-dominated individuals form a trade-off front from
the upper left to the lower right part of the plot. The evolution of the archive solutions is
visualised by using for each generation a different color. Both algorithms are approaching
the Pareto-optimal front with each generation. In figure 5.17 the archive population
is shown separately for both algorithms at different evolution stages. The convergence
process can be clearly distinguished and it can also be seen, that both algorithms are
approaching the Pareto-optimal front in a different way. As already shown in figure 5.14
IBEA tends to converge strongly towards copper containing catalysts. In figure 5.17
this effect can be seen by cluster formation in the region with a high yield to N2. For
SPEA2 as well some clustering can be observed, but less pronounced. After the seventh
generation for both algorithms the solutions are well distributed along the Pareto-optimal
front. However, SPEA2 was able to approach the Pareto-optimal front better than IBEA
and also the distribution is slightly better. A guess of the Pareto-optimal front of this
system is visualized in figure 5.15A and 5.16A by a gray line.

In figure 5.15B and 5.16B different regions of the Pareto plots are magnified in order to
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visualise the best solutions. The NO to N2 yield of selected solutions is furthermore shown
in the figure 5.18. It can be seen, that the Pareto-optimal trade-off front is composed
predominantly of copper and nickel containing catalysts with varying concentrations.
Interestingly these binary oxides are more active than the corresponding single element
oxide catalysts (see figure 5.18A). The incorporation of a third element as for instance
cobalt or iron generally yields in an activity loss as can be seen in figure 5.15B or 5.18B.
However, at temperatures below 600 K copper and nickel catalysts in combination with
cobalt, iron and sometimes also manganese are optimal solutions as shown in figure 5.16B
and 5.18C.

5.6.2 Discussion and comparison of SPEA2 and IBEA

In the following section explanations for the observed results will be given. Also the
results of SPEA2 and IBEA will be compared. It is important to note, that both
evolutionary processes are stochastic and a real comparison of the actual algorithms is
not possible. Only the results observed here, which may be influenced by random effects,
can be compared. For a proper comparison of IBEA and SPEA at least 50 runs, always
with the same settings, but with different random seeds, have to be performed, just like
the theoretical experiments in section 5.5.4.

In figure 5.13 the enlargement of the boxes (the 50% quantiles) during the evolution
was observed. This is due to the fact, that the distribution along the (1-yield) axis
and along the peak temperature axis is improving. The same phenomena can be nicely
distinguished in figure 5.17. In the first generation the archive population shows no
clear orientation in the objective space. Already after the first few generations for both
algorithms the distribution along the (1-yield) axis improves significantly and leads to an
enlargement of the 50% quantiles in the boxplots in figure 5.13. This is furthermore an
indication for a successful convergence towards the true Pareto-optimal front and for a
good diversity preservation for both algorithms.

The next interesting phenomenum is the fact, that IBEA was not able to approach
the Pareto-optimal front as good as SPEA2. It is very likely, that the fast convergence of
IBEA towards copper containing catalysts, as can be seen in figure 5.14, had a negative
effect on the performance of the algorithm. Of course this may not be due to the algorithm
itself, but only a random effect, as stated before. However, also in the theoretical part in
section 5.5.4 of this work, it was observed, that a strong convergence towards a certain
solution led to a reduced performance to find the globally optimal set. In the case of the
theoretical problem a strong convergence towards only one of the two Pareto-optimal
fronts reduced the performance of finding simultaneously both Pareto-optimal fronts. In
figure 5.14 it can also be seen, that the strong favorization of copper containing catalysts
decreased the speed of convergence towards nickel containing catalysts and also inhibited
the other elements to be be maintained in the population. Nevertheless in the last two
generations also IBEA was able to find promising copper and nickel catalysts and showed
a strong convergence towards nickel additionally to copper. In conclusion, it seems to
be important for a genetic algorithm not to favor a single solution strongly. However,
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a properly working algorithm should still be able to find optimal solutions after a few
more generations.

5.6.3 Discussion of the chemical properties of the system

In this section a closer look at the chemical properties of the system will be presented
and the influence of the elements on the catalytic activity will be discussed on the basis
of the results observed during the evolution of the system.

Copper and nickel

Both copper and nickel the are the only elements in this system, which show a high
SCR activity. These two elements predominantly form the Pareto-optimal trade-off front.
Copper is especially active at low metal loadings around 8 to 12 mole-%, higher copper
loadings lead to a distinct activity drop. This is somewhat different for nickel containing
catalysts, which are highly active at metal loadings up to 30-35 mole-% depending on
the catalyst composition. Catalysts with a peak activity at low temperatures, generally
have a relatively high nickel loading (15 to 30 mole-%), whereas catalysts with low metal
loading (5 to 15 mole-%) are located in the upper right region (the high activity region)
of the Pareto front. XRD measurements (not shown here) of a highly active Al-84-Cu-
0.08-Ni-0.08 catalyst show, that nickel is forming in parts a crystalline spinel phase.
No clear reflex for copper spinel or copper oxide can be distinguished, it is therefore
likely, that amorphous copper(II) oxide is embedded into the amorphous aluminium
oxide support matrix. The active phase in this catalyst would therefore be a crystalline
nickel oxide spinel phase in combination with an amorphous copper(II) oxide phase.
Catalysts containing a high amount of copper spinel, as for instance in the case of a
copper catalyst synthesised with 67 mole-% aluminium and 33 mole-% copper, are still
active, but only about one third as active as catalysts containing amorphous copper
oxide. Hence the active phase in the case of copper seems to be amorphous copper(II)
oxide and not crystalline spinel, and in contrast the active phase in the case of nickel
is crystalline spinel and probably also in parts amorphous nickel oxide. For a better
investigation of the active sites, more XRD measurements would have to be performed.

Cobalt, iron and manganese

As already described in the previous section, the addition of cobalt and iron to a catalyst
does not result in a clear trend. Sometimes the addition results in an improved activity
and sometimes there is no clear change in activity. However, in most of the cases the
activity of a catalyst is decreasing. In the case of manganese, which by itself has a SCR
activity of about 15%, in all of the cases an addition results in a significant decrease of the
activity. There are several possible general explanations for this behaviour. The addition
of an element to an active composition can lead to the inhibition of the formation of the
active phase. For instance, if copper(II) oxide is highly active, the addition of manganese
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may lead to a disturbance of this phase and of the active sites. Another explanation is
the formation of a new phase, which is not active for the SCR of NO, but for the selective
oxidation of propene. It was, for instance, observed during the experiments, that most
of the manganese containing catalysts were highly active at low temperature for the
oxidation of propene. The third possible explanation, which is somehow related to the
first explanation is the possibility, that the addition of an element prevents the formation
of an ordered crystalline phase. This, for instance, may be the case for lanthanum
containing catalysts. As already said, only an elaborated investigation of the crystalline
structure by XRD would be able to clarify this effect.

Cobalt and iron are elements, which do not decrease the activity of a catalyst
significantly. At higher metal loadings, a cobalt oxide, sometimes in a crystalline spinel
structure, is emerging, which is highly active at low temperatures for the NO oxidation
to NO2. NO2 can be in some cases more reactive than NO as described in the state of
the art chapter (chapter 2). In combination with a highly active element for the SCR
such as copper or nickel, this leads to catalysts, which are active at low temperatures.
Iron is an element, which is known in literature to be highly active for the SCR of NO
by NH3 (Sato et al., 1992, Willey et al., 1991). In this work, no clear increase in activity
could be identified.

Lanthanoid

As already mentioned in the previous section, the negative trend of the occurrences of
lanthanum and samarium in the archive population as shown in figure 5.14 might be
related to the disturbance of the formation of a crystalline phase upon calcination. In
contrast, the addition of cerium improves the formation of oxide particles with a high
BET surface area and does not seem to disturb the other elements. Also cerium oxide
can be considered itself as a catalyst support, if the cerium metal loading is high. This is
probably the explanation, why the occurrences of cerium in the archive population are
stable during the evolution as can be seen in figure 5.14.

Potassium and strontium

Both potassium and strontium are denoted as promotor elements and the maximal
concentration of these elements was limited to 5 mole-%. For strontium no clear conclusion
can be given, the element does not seem to have any positive or strongly negative effect
on the performance. In contrast, the addition of potassium resulted in all cases in a very
pronounced drop in the activity of the corresponding catalyst. It was observed, that
the resulting catalysts containing potassium were differently colored and sometimes very
inhomogeneous. Thus it is likely to assume, that the activity drop is due to a very poor
synthesis. Potassium is known to promote highly the combustion of the activated carbon.
A possible explanation for the bad synthesis of potassium containing catalysts could
therefore be the formation of hot spots during the calcination process, which destroy or
disturb the formation of an active phase.
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Figure 5.15: Visualisation of the solutions of the archive population in the objective space
for SPEA2 (A). Figure (B) shows the solutions located in the highly active
region of the objective space.
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Figure 5.16: Visualisation of the solutions of the archive population in the objective space
for IBEA (A). Figure (B) shows the solutions located in the low temperature
region of the objective space.
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Figure 5.17: Visualisation of the evolution of the archive population of SPEA2 and IBEA
for selected generations.
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Figure 5.18: NO to N2 conversion curves as a function of the temperature. Figure (A)
shows copper and nickel single and binary oxide catalysts, figure (B) higher
order oxide catalysts and figure (C) selected Pareto-optimal solutions.70



6 Conclusions and outlook

In order to optimize a complex noble metal free solid catalyst system, several methods
have successfully been developed and combined in this thesis. A highly flexible, high-
throughput parallel reactor system for catalysts testing was assembled and installed in
the first part. Due to a very fast FTIR analysis, it is possible to measure the catalytic
activity at 10 different temperatures of 49 catalysts in about 26 hours. In combination
with a fast and reproducible synthesis method, based on exotemplating, it is possible
to analyse in less than one week 49 catalysts. The optimization of the noble metal free
catalyst system was carried out on the basis of a highly flexible framework, the platform
and programming language independent interface for search algorithms (PISA). Multiple
objectives were chosen to be optimized by using two different multi-objective evolutionary
algorithms, namely SPEA2 and IBEA. The application of genetic algorithms to the
solid catalyst system was found to be difficult. However, by using a special encoding in
combination with repair algorithms, it was possible to successfully optimize the catalyst
system. The results show, that evolutionary algorithms are valuable tools for screening
and optimization of huge search spaces. Especially if no detailed information of the
system is known, the full strength of these methods can be played off. SPEA2 was found
to perform better than IBEA. This, however, may not be due to the algorithm itself, but
only a result of random effects. During the optimization new chemical knowledge was
gained. The best noble free catalyst found by this method, are combinations of copper
and nickel. Catalysts, which are active at low temperature, furthermore include cobalt
and iron.

A hybridisation of the developed optimization framework with neural networks, acting
as local search during the evolution, could improve the optimization process. Also the
problem of encoding solid catalysts and the impact of the encoding on the performance
of the experimental evolution should be investigated in more detail in further studies.
With respect to the reactor set-up, automatization improvements can be achieved by
further development of the Labview program in order to have a fully automated system,
which is capable to change the flow rate and the temperature according to previously
defined programs. Also a fully automated synthesis procedure would significantly reduce
the experimental time. From the chemical point of view, the optimization of a catalyst
system, where calcination temperature and other synthesis parameters are incorporated,
would be interesting. Also the investigation of different supports and mechanical mixtures
of catalysts, could lead to interesting results. Furthermore, the active species could be
identified by an in depth XRD analysis of the samples.
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A Characterisation methods

A.1 Physisorption

A common method for determination of pore volume, pore sizes, areas or volumes is the
sorption of probe molecules on a porous solid. Nitrogen or argon physisorption has found
to be a generally accepted method for this kind of characterization of porous materials.

The adsorption of a gas on a solid can be quantitatively described by an adsorption
isotherm, which represents the amount of condensed molecules (the adsorbates) in a
porous solid (the absorbent) as a function of the partial pressure of the gas-phase at a
constant temperature. Because of the temperature dependence of sorption in general, it
is necessary to measure under isothermic conditions.

Depending on the structure of the solid and on the forces during adsorption, the
IUPAC developed in 1985 a standard classification into six general sorption isotherm
types. Type I is characteristic for microporous solids like zeolites or monolayer adsorption,
type II for nonporous and type III for macroporous solids. Type IV and V possess a
hysteresis loop typical for sorption in mesopores proceeding through multilayer adsorption
and capillary condensation. Type VI represents the relatively rare stepped multilayer
sorption isotherm.

The BET-surface analysis

Brunnauer, Emmett and Teller introduced the concept of multilayer adsorption. Here
the first layer of adsorbed molecules acts as new substrate for further adsorption. The
classical 2-parameter equation is the well known BET-equation:

θBET(x) =
n

nm

=
1

1− x
· Kx

1 + (K − 1)x
(1.1)

with the total amount of adsorbates n, the amount of adsorbates in a monolayer nm, the
relative concentration or pressure x and a constant K which is related to the net heat of
adsorption of the monolayer. It is important to note that this classical form is only valid
for an infinite number of layers on a flat surface taking into account the same heat of
adsorption for each layer. To calculate the parameters nm and K equation (1.1) can be
rewritten into the classic BET linear form:

x

n(1− x)
=

1

nmK
(1 + (K − 1) x) =

1

nmK
+

K − 1

nmK
x (1.2)
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Now a plot of x/n(1− x) against x should yield in a straight line in a pressure range of
about 0.05 to 0.3 p/p0. From the slope and the intercept it is now possible to determine
the above two parameters. The specific surface SBET occupied by the monolayer of the
adsorbates can be obtained from nm and the net heat of adsorption from K. Some
restrictions to the parameter K can be used to optimize the BET analysis. For instance
K always has to be positive and larger than zero. Also it should not be too high or too
low.

The analysis of the adsorption isotherm by the BET method is a common method to
determine the surface area of a porous material, but is mostly restricted to mesoporous
or macroporous materials. The application of the BET method to materials containing
micropores has to be done with care and only an apparent surface area can be obtained.

Measurements

Nitrogen physisorption isotherms were measured on a Nova 3000 sorptometer from
Quantachrome at liquid nitrogen temperature (77 K). The samples were first activated
under under vacuum at 573 K for at least 2 hours. After the measurements the weight of
the samples was determined on an analytical balance at room temperature. Total pore
volumes were determined using the adsorbed volume at a relative pressure of 0.97. The
BET surface area was estimated from the relative pressure range from 0.05 to 0.30.

A.2 X-ray powder diffraction (XRD)

X-ray diffraction (XRD) is an extensively used technique in material science to determine
crystallographic and textural properties and inner stress due to defects.

The powder X-ray diffraction patterns were recorded with a STOE STADI P θ-θ
powder X-ray diffractometer in reflection geometry (Bragg-Brentano) using Cu-Kα1+2

radiation.

A.3 Scanning electron microscopy (SEM)

Scanning electron microscopy (SEM) is a powerful technique to study the surface mor-
phologies (texture, shape and size) of the bulk samples of solid materials. A beam of
electrons is scanned across the surface of the sample. This method can be combined with
energy dispersive X-ray microanalysis (EDX) to analyze the backscattered and secondary
electrons produced by the primary beam of electrons. In this thesis, SEM images were
used to estimate the size and shape of particles of the samples.

For all SEM images, a Hitachi S-3500N scanning electron microscope operated at 10
kV was used. The samples were coated by a thin layer of gold before analysis.
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B Parameters and settings

B.1 Catalytic measurements

Feed composition:
C3H6 concentration: 2000 ppm
NO concentration: 1500 ppm
O2 concentration: 50000 ppm

Reactor settings:
total flow: 2566 ml/min
analysis flow: 52 ml/min
volume of the catalytic bed: 0.157 ml
GSHV: 20000-25000 h−1

temperature range: 473.15 to 773.15 K
temperature ramp: 11-13 K/h
time to wait: 120 s

FTIR settings:
Volume of the IR cell: 17 ml
Resolution: 1
Apperture: 100
Gain: 8
Number of scans: 8

74



Chapter B Appendix B: Parameters and settings

B.2 Genetic algorithm

Initial population size (α): 24
Parent population size (µ): 24
Offspring population size (λ): 24
Chromosome encoding: 27 bit
Mutation type: bit flip mutation
Mutation probability: 1/27 = 0.037
Crossover type: one point binary crossover
Crossover probability: 1
Number of objectives: 2
Mating selection: binary tournament selection
Enviromental selection: NSGA2 / SPEA2 / IBEA
IBEA indicator type: ε-indicator
IBEA κ: 0.05
IBEA ρ: 1.1
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C Source codes

C.1 Labview

Figure 3.1: Temperature ramp.
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Figure 3.2: Data logging into a text file.
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Figure 3.3: Labview to MySQL by a HTTP-GET request.
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Figure 3.4: First page of the GUI of the Labview program
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C.2 Matlab

error of the system := 0.051

error outliner := 0.22

while not end of file do3

convert raw data to concentrations4

calculate standard deviation for each datapoint5

sort datapoints by valve position6

end7

while datapoints do8

calculate conversions and yields of components9

assign weights to each datapoint10

end11

outliner := true12

while outliner do13

outliner := false14

fit a smoothing spline to the datapoints using the weightened nonlinear15

least squares method
for each datapoint do16

if (datapoint - smoothing spline) > error outliner then17

remove datapoint from dataset18

outliner := true19

end20

end21

end22

do plots of conversions and yields23

Algorithm C.1: Pseudocode for parsing the raw data file and calculation of the NO
conversion.
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initialize variables and constants1

initialize variation operators2

initialize PISA communication files3

initialize random seed4

write random seed to PISA parameter file5

create inital population randomly6

evaluate inital population7

write objective functions values to PISA population file8

while not termination condition do9

while selector not ready do10

if PISA state == 2 then11

read PISA archive list12

read PISA population list13

reset PISA archive list14

reset PISA population list15

if not error then16

create archive from list17

create new population from list18

end19

end20

end21

apply variation operators on population22

decode individuals23

if not individuals valid then24

repair individuals25

end26

write robot synthesis file27

while not valid fitness values do28

evalute fitness experimentally29

end30

remember populations and archives31

write PISA population file32

end33

Algorithm C.2: Pseudocode of the PISA variator module.
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C.3 OMNIC

Listing C.1: Main loop to read and write the main data file
1 (...)
2 send updateReadout ”Request”, 3
3 send setRequestVal 90,2,”\\Reaktor\communicate\measurements.txt”
4 send updateReadout ”Start of Loop”, 4
5 (...)
6 do
7 increment index
8 send updateReadout ”Loop[]: Report”, 5
9 send report 3,”\\Reaktor\data\data−gen0#mv50#.txt”,0,0,”#mv50# ; #mv5# ; #mv10# ;”

10 send updateReadout ”Loop[]: Collect Sample”, 6
11 send enableApp false
12 send executeOmnic ”[Invoke CollectSample
13 ””#mv50#−#mv1#−#mv5#−#mv10#−#mv101#”” AUTO POLLING]”
14 send waitOnInvoke ”CollectSample”
15 send updateReadout ”Loop[]: Save As”, 7
16 send executeOmnic ”[Export ” &
17 getRTSFN(”\\Reaktor\data\data−gen0#mv50#−#mv1#−#mv5#−#mv10#−#mv101#.spa”) & ”]”
18 send updateReadout ”Loop[]: Macro mess NO.mac”, 8
19 send runUserTask ”\\Reaktor\source code\IR\mess NO.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
20 get peek()
21 send updateReadout ”Loop[]: Macro mess C3H6.mac”, 9
22 send runUserTask ”\\Reaktor\source code\IR\mess C3H6.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
23 get peek()
24 send updateReadout ”Loop[]: Macro mess CO2.mac”, 10
25 send runUserTask ”\\Reaktor\source code\IR\mess CO2.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
26 get peek()
27 send updateReadout ”Loop[]: Macro mess CO.mac”, 11
28 send runUserTask ”\\Reaktor\source code\IR\mess CO.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
29 get peek()
30 send updateReadout ”Loop[]: Macro mess NO2.mac”, 12
31 send runUserTask ”\\Reaktor\source code\IR\mess NO2.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
32 get peek()
33 send updateReadout ”Loop[]: Macro mess H2O.mac”, 13
34 send runUserTask ”\\Reaktor\source code\IR\mess H2O.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
35 get peek()
36 send updateReadout ”Loop[]: Macro mess N2O.mac”, 14
37 send runUserTask ”\\Reaktor\source code\IR\mess N2O.mac”,”#mv1#, #mv5#, #mv10#, #mv50#”,”103”
38 get peek()
39 send updateReadout ”Loop[]: Math”, 15
40 send setMathVal 101,”#mv101# + 1”,”0”
41 send updateReadout ”Loop[]: End of Loop”, 16
42 until index = item 1 of svLTstack
43 (...)

Listing C.2: Main loop to collect and evaluate several spectra
1 (...)
2 send updateReadout ”Request”, 6
3 send setRequestVal 50,2,”\\Reaktor\communicate\generation number.txt”
4 send updateReadout ”Request”, 7
5 send setRequestVal 90,2,”\\Reaktor\communicate\measurements.txt”
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6 send updateReadout ”Request”, 8
7 send setRequestVal 10,2,”\\Reaktor\communicate\valve position.txt”
8 send updateReadout ”Start of Loop”, 9
9 (...)

10 do
11 increment index
12 send updateReadout ”Loop[]: Request”, 10
13 send setRequestVal 1,2,”\\Reaktor\communicate\timestamp.txt”
14 send updateReadout ”Loop[]: Delete File”, 11
15 send executeOmnic ”[DeleteFile ””\\Reaktor\communicate\variables\time#mv101#.txt””]”
16 send updateReadout ”Loop[]: Report”, 12
17 send report 3,”\\Reaktor\communicate\variables\time#mv101#.txt”,0,0,”#mv1#”
18 send updateReadout ”Loop[]: Request”, 13
19 send setRequestVal 5,2,”\\Reaktor\communicate\temperature.txt”
20 send updateReadout ”Loop[]: Delete File”, 14
21 send executeOmnic ”[DeleteFile ””\\Reaktor\communicate\variables\T#mv101#.txt””]”
22 send updateReadout ”Loop[]: Report”, 15
23 send report 3,”\\Reaktor\communicate\variables\T#mv101#.txt”,0,0,”#mv5#”
24 send updateReadout ”Loop[]: Collect Sample”, 16
25 send enableApp false
26 send executeOmnic ”[Invoke CollectSample
27 ””#mv50#−#mv1#−#mv5#−#mv10#−#mv101#”” AUTO POLLING]”
28 send waitOnInvoke ”CollectSample”
29 send updateReadout ”Loop[]: Save As”, 17
30 send executeOmnic ”[Export ” &
31 getRTSFN(”\\Reaktor\data\data−gen0#mv50#−#mv1#−#mv10#−#mv5#−#mv101#.spa”) & ”]”
32 send updateReadout ”Loop[]: Baseline Correct”, 18
33 send executeOmnic ”[AutoBaseline]”
34 send updateReadout ”Loop[]: Math”, 19
35 send setMathVal 101,”#mv101# + 1”,”0”
36 send updateReadout ”Loop[]: End of Loop”, 20
37 until index = item 1 of svLTstack
38 sysError = ”ok”
39 (...)

Listing C.3: NO peak identification and calculation
1 (...)
2 send updateReadout ”Store Arguments”, 1
3 send setStoArgVal ”1, 5, 10, 50”
4 send updateReadout ”Find Peaks”, 2
5 (...)
6 send setOmnic ”Display RegionStart”, ”1898.5”
7 send setOmnic ”Display RegionEnd”, ”1901.5”
8 send executeOmnic ”[PeakPick 1e−002 50]”
9 (...)

10 send updateReadout ”Store Result”, 3
11 send setStoResVal 111,1,5,1
12 send updateReadout ”Peak Height”, 4
13 send executeOmnic ”[CorrectedPeakHeight 1901.5 1900 1898.5 Shift]”
14 (...)
15 send updateReadout ”Store Result”, 5
16 send setStoResVal 112,4,1,1
17 send updateReadout ”Find Peaks”, 6
18 (...)
19 send setOmnic ”Display RegionStart”, ”1878”
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20 send setOmnic ”Display RegionEnd”, ”1872”
21 send executeOmnic ”[PeakPick 1e−002 50]”
22 (...)
23 send updateReadout ”Store Result”, 7
24 send setStoResVal 113,1,5,1
25 send updateReadout ”Peak Height”, 8
26 send executeOmnic ”[CorrectedPeakHeight 1878 1875 1872 Shift]”
27 (...)
28 send updateReadout ”Store Result”, 9
29 send setStoResVal 114,4,1,1
30 send updateReadout ”Peak Area”, 10
31 send executeOmnic ”[CorrectedPeakArea 1980 1980 1882 1882]”
32 (...)
33 send updateReadout ”Store Result”, 11
34 send setStoResVal 115,5,1,1
35 (...)
36 send report 3,”\\Reaktor\data\data−gen0#mv50#.txt”,”Excel”,”#mv1#”,
37 ”NO ; #mv111# ; #mv112# ; #mv113# ; #mv114# ; #mv115# ;”
38 (...)
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